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Abstract

Several significant accomplishments were made during the present reporting period.

We expanded our new method, for identifying the presence of absorb-

ing aerosols and simultaneously performing atmospheric correction, to the

point where it could be added as a subroutine to the MODIS water-leaving
radiance algorithm.

• We successfullyacquiredmicro pulse lidar(MPL) data at sea during a

cruisein February.

• We developed a water-leavingradiancealgorithm module for an approxi-

mate correctionof the MODIS instrument polarizationsensitivity.

• We delivereda complete versionofthe water-leavingradiancealgorithm to

R. Evans forincorporationintothe next versionofMODIS software.

We participatedin one cruiseto the Gulf of Maine, a wellknown region

formesoscalecoccolithophoreblooms. We measured coccolithophoreabun-

dance, production and opticalproperties.
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Preamble

As in earlier reports, we will continue to break our effort into seven distinct units:

• Atmospheric Correction Algorithm Development

• Whitecap Correction Algorithm

• In-water Radiance Distribution

• Residual Instrument Polarization

• Pre-launch/Post-launchAtmospheric CorrectionValidation

• Detached CoccolithAlgorithm and Post-launchStudies

This separationhas been logicalthus far;however, as launch of AM-1 approaches,itmust be rec-

ognized that many oftheseactivitieswillshiftemphasis from algorithmdevelopment to validation.

For example, the second, third,and fifthbulletswillbecome almost totallyvalidation-focussed

activitiesin the post-launchera,providingthe coreof our experimental validationeffort.Work

under the firstbulletwillcontinueintothe post-launchtime frame, but willbe drivenin part by

algorithm deficienciesrevealedas a resultof validationactivities.We willcontinue to use this

format forCY97.
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1. Atmospheric Correction Algorithm Development.

a. Task Objectives:

During CY 1997 there are seven objectives under this task. Task (i) below is considered to

be the most critical. If the work planned under this task is successful, a module that enables the

algorithm to distinguish between weakly- and strongly-absorbing aerosols will be included in the

atmospheric correction algorithm.

(i) We will continue the study of the "spectral matching'algorithm with the goal of having

an algorithm ready for implementation by the end of CY 1997. As our work has shown that

a knowledge of the vertical distribution of the aerosol is critical, if it is strongly absorbing, we

have procured a micro pulse lidar (MPL) system for use at sea on validation cruises, and from

islands(likelyBarbados or the Canary Islands)in the Saharan dust zone, to begin to compile the

climatologyof the verticaldistributionrequiredto adopt candidate distributionsfor use in this

region.

(ii) We need to test the basic atmospheric correction algorithm with actual ocean color imagery.

We will do this by looking at SeaWiFS and OCTS imagery as they become available.

(iii) We must implement our strategy for adding the cirrus cloud correction into the existing

atmospheric correction algorithm. Specific issues include (1) the phase function to be used for

the cirrus clouds, (2) the details of making two passes through the correction algorithm, and (3)

preparation of the required tables. However, in the light of the success of our spectral matching

algorithm, we may have to make significant modifications in our original strategy. These issues will

be addressed during CY 1997 with the goal of having a complete implementation strategy ready

by the end of CY 1997.

(vi) The basic correctionalgorithmyieldsthe product of the diffusetransmittance and the

water-leavingreflectance.However, we have shown thatthe transmittancedepends on the angular

distributionofthe reflectanceonly when thepigment concentrationisverylow and then only in the

blue.We need to developa method to includethe effectsof the subsurfaceBRDF forlow-pigment

waters in the blue.

(v) We willinitiatea study to determine the efficacyof the presentatmospheric correction

algorithm on removal for the aerosoleffectfrom the measurement of the fluorescencelineheight

(MOD 20).
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(vi) We will examine methods for efficiently including earth-curvature effects into the atmo-

spheric correction algorithm. This will most likely be a modification of the look-up tables for the

top-of-the-atmosphere contribution from Rayleigh scattering.

(vii) We will examine the necessity of implementing our out-of-band correction to MODIS.

b. Work Accomplished:

(i) We consider this task to be our most important atmospheric correction activity of 1997, and

as such the major part of our effort on atmospheric correction will be focussed on it. During this

CY, we have further tested our spectral matching algorithm that, although very slow, is capable of

distinguishing between weakly- and strongly-absorbing aerosols. It is based on combining a model

of the atmosphere with a water-leaving radiance model for the ocean, and effecting a variation

of the relevant parameters until a satisfactory fit to the MODIS top-of-atmosphere radiance is

achieved. In simulations it showed significant success in detecting the absorption properties of the

aerosol, i.e., distinguishing between weakly- and strongly-absorbing aerosols. We demonstrated

that, at least in the first approximation, it is also capable of functioning in the same manner when

aerosol vertical structure is added as an additional parameter. (Note that vertical structure is only

important when the aerosol is strongly absorbing.) We found ways to significantly increase the

speed of the algorithm, and to enable it to operate using the same set of lookup tables that the

basic algorithm uses. This will enable us to incorporate the spectral matching algorithm in the

basic correction algorithm, to be called each N × N pixels (where N _ 10 - 100) to insure that

candidate aerosol models with the correct properties are being used by the basic algorithm. A

complete report describing our progress on this task is provided in Appendix 1. Our goal is to

be able to have this new algorithm functional by the end of this CY.

(ii) Some imagery has been acquired from the 0CTS and we are preparing to test the perfor-

mance of the algorithm in its present state.

(iii) None. This task has been put on hold to free resources for examination of task (i).

(iv) No work was carriedout on thistask.

(v) To study the efficacyof atmosphericcorrectionof the fluorescencelineheight,we needed

a setoflookup tablesspecificto the relevantspectralbands. These requiredabout 14,000radiative

transfersimulations.These tableshave been prepared for our basicaerosolmodels.

(vi) No work was carried out on this task.
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(vii)The specificson incorporatingthe out-of-bandcorrectionsinthe MODIS algorithm have

been worked out.

c. Data/Analysis/Interpretation: See item b above.

d. Anticipated Future Actions:

(i) We willcontinue work on the spectralmatching algorithm. Of particularinterestis to

devisea way of performing the optimizationthat ismore efficientand accuratethan the "brute-

force"method describedin Appendix 1. Also,we need toknow how closelythe candidate aerosol

models must be to the trueaerosolinorderto effecta good retrieval.To tryto understand thiswe

are attempting to use genericpower-law sizedistributionsofidenticalparticles(a size-independent

refractiveindex) as candidatesforretrievingaerosoland ocean propertieswhen the true aerosol

isa combination of two log-normaldistributionswith the two components composed of different

species.The initialresultsforthishave been encouraging.

(ii) As more OCTS imagery is acquired, we shall continue testing the algorithm. In particular,

we want to test the spectral matching algorithm with real ocean color data.

(iii) None. The cirrus cloud issue in the presence of our spectral matching method needs to be

explored. We will resolve the spectral matching questions first, then devise a strategy to implement

the cirrus correction.

(iv) None.

(v) We will perform a basic test of the efficacy of the correction algorithm for retrieving the

fluorescence line height.

(vi) None.

(vii)None, untilwe are provided with the finalMODIS spectralresponsefunctions.

L Publications: Four papers are in various stages of the publication process. They are:

H.R. Gordon, T. Zhang, F. He, and K. Ding, Effects of stratospheric aerosols and thin cirrus clouds

on atmospheric correction of ocean color imagery: Simulations, Applied Optics, 36,682-697 (1997).

H.R. Gordon, Atmospheric CorrectionofOcean Color Imagery in the Earth Observing System Era,

Jour. Geophys. Res. (In Press).
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H. Yang and H.R. Gordon, Remote sensingofocean color:Assessment ofthe water-leavingradiance

bidirectionaleffectson the atmosphericdiffusetransmittance,Applied Optics(Accepted).

H.R. Gordon, T. Du, and T. Zhang, Remote sensingocean colorand aerosolproperties:resolving

the issueof aerosolabsorption,Applied Optics(Accepted).
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2. Whitecap Correction Algorithm (with K.J. Vo$$).

As the basic objectives of this task have been realized, work is being suspended until the val-

idation phase, except insofar as the radiometer will be operated at sea when sufficient number of

personnel are available. Karl Moore, the post doctoral associate who was responsible for the opera-

tion of the instrument and the data analysis, has moved to the Scripps Institution of Oceanography.

In his absence our goal is to maintain experience in operating and maintaining the instrumentation

in preparation for the validation phase of the contract.

a. Task Objectives:

Operate the radiometer at sea to maintain experience in preparation for the validation phase.

b. Work Accomplished:

The radiometer was operated during a February cruise with Dennis Clark off Hawaii. From

the standpoint of whitecaps this was a very good cruise (high winds). A large amount of whitecap

data was collected.

c. Data/Analysis/Interpretation

At this time we have reduced the calibration data, but not the cruise data.

d. Anticipated Future Actions:

We will work to reduce the cruise data during this period, but it is a lower priority than the

analysis of other data collected during this cruise.

e. Problems/Corrective Actions: None

f. Publications: Two papers on our whitecap work are still in the review process. They are:

K.D. Moore, K.J. Voss, and H.R. Gordon, Spectral reflectance of whitecaps: Instrumentation,

calibration, and performance in coastal waters, Jour. Atmos. Ocean. Tech. (Submitted).

K.D. Moore, K.J. Voss, and H.R. Gordon, Spectral reflectance of whitecaps: Fractional coverage

and the augmented spectral reflectance contribution to the water-leaving radiance, Jour. Geophys.

Res. (Submitted).
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3. In-water Radiance Distribution (with K.J. Voss).

a. Task Objectives:

The main objective in this task is to obtain upweUing radiance distribution data at sea for

a variety of solar zenith angles to understand how the water-leaving radiance varies with viewing

angle and sun angle.

b. Work accomplished:

The instrument failed just before use on a cruise in February. It was repaired and used during

a short cruise in Florida Bay during May. On this cruise we obtained several upweUing radiance

distributions in turbid Case 2 water. The instrument operated properly and was calibrated both

before and after this cruise.

c. Data/Analysis/Interpretation: None.

d. Anticipated future actions:

We will operate this instrument during a cruise with Dennis Clark in July in Hawaii. We will

also be reducing data from three cruises and their associated calibrations.

e. Problems/Corrective actions: None.

f. Publications: None.

8
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4. Residual Instrument Polarization.

The basic question here is:ifthe MODIS responds to the stateof polarizationstate of the

incidentradiance,giventhe polarization-sensitivitycharacteristicsofthe sensor,how much willthis

degrade the performance of the algorithmforatmospheric correction,and how can we correctfor

theseeffects?

a. Task Objectives:

Add a module to perform the correctionforresidualinstrument polarization.

b. Work Accomplished:

A module was added to perform the correctionforresidualinstrumentpolarization.

c. Data/Analysis/Interpretation: None.

d. Anticipated Future Actions:

Although thistaskisnow basicallycomplete.Allthatremains isincorporatingthe SBRS/MCST

polarization-sensitivitydata intothe module.

e. Problems/Corrective Actions: None

f. Publications: The paper describingthe polarization-sensitivitycorrectionhas been accepted

for publication in Applied Optics.

H.R. Gordon, T. Du, and T. Zhang, Atmospheric correction of ocean color sensors: Analysis of the

effects of residual instrument polarization sensitivity, Applied Optics (Accepted).



Semi-Annual Report (1 January - 30 June 1997) NAS5-31363

5. Pre-launch/Post-launch Atmospheric Correction Validation (with K.J. Voss).

a. Task Objectives:

The long-term objectives of this task arefour-fold:

(i) First, we need to study aerosol optical properties over the ocean in order to verify the

applicability of the aerosol models used in the atmospheric correction algorithm. Etfecting this

requires obtaining long-term time series in typical maritime environments. This will be achieved

using a CIMEL sun/sky radiometer that can be operated in a remote environment and send data

back to the laboratory via a satellite link. These are similar the radiometers used by B. Holben in

the AERONET Network.

(ii) Second, we must be able to measure the aerosol optical properties from a ship during

the initialization/calibration/validation cruises. The CIMEL-type instrumentation cannot be used

(due to the motion of the ship) for this purpose. The required instrumentation consists of an

aLl-sky camera (which can measure the entire sky radiance, with the exception of the solar aureole

region) from a moving ship, an aureole camera (specifically designed for ship use) and a hand-

held sun photometer. We had a suitable sky camera and sun photometer but had to construct

an aureole camera. Our objective for this calendar year is to make measurements at sea with

this instrumentation, both to collect a varied data set and to test the instrumentation and data

reduction procedures.

In the case of strongly-absorbing aerosols, we have shown that knowledge of the aerosol vertical

structure is critical. Thus, we need to be able to measure the vertical distribution of aerosols during

validation exercises. This can be accomplished with ship-borne LIDAR. We have procured a Micro

Pulse Lidar (MPL) system and modified it for ship operation. Our goal during this reporting period

was to successfully operate it on a ship.

(iii) The third objective is to determine how accurately the radiance at the top of the atmo-

sphere can be determined based on measurements of sky radiance and aerosol optical thickness at

the sea surface. This requires a critical examination of the effect of radiative transfer on "vicarious"

calibration exercises.

(iv) The forthobjectiveisto utilizedata from other sensorsthathave achievedorbit(OCTS,

POLDER, MSX), or are expected to achieveorbit(SeaWiFS) priorto the launch of MODIS, to

validateand fine-tunethe correctionalgorithm.

b. Work Accomplished:

10
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(i) During the last year we were operating the CIMEL in it's location in the Dry Tortugas. In

October this instrument was removed for recalibration. At the same time the AERONET network,

run by B. Hobren, decided to upgrade the CIMEL instruments with more stable interference filters

and small hardware changes. It was returned in June, just before we had the deployment for ACE-

II. An attempt was made to install it in the short time before ACE-II; however it was unsuccessful

as the instrument failed. It has been sent back to NASA and either they or we will install it during

the next reporting period.

(ii) The sky camera system and aureole system was used on a cruise with Dennis Clark off of

Hawaii (during February). Dennis Clark's group provided the sun photometer data. In addition

to participating on the cruise we performed calibration of all the systems pre- and post-cruise. We

have begun reducing sky radiance data obtained during several cruises in the last year. We have

also reduced the aureole data from the first two cruises, and are currently evaluating this data. We

are working on the data reduction procedures to allow measurements to be reduced in almost real

time (each night) so that almucantor and principal plane measurements can be obtained quickly.

To try to extend the data base of aerosol optical properties, we examined the possibility of

extending our sky radiance inversion algorithm for application over the land. The rational for this

is the simplicity of land-based compared to ship-based measurements in coastal areas. The results,

as expected, show that as long as the land albedo is small, good inversions can be obtained in the

red and near infrared regions of the spectrum. The complete results of this study are provided in

Appendix 2.

To address the problem of vertical distribution of aerosols we have acquired a Micro Pulse Lidar

from SSEI. We have constructed an air-conditioned weather-proof box for the instrument and this

system was used for the first time during the February cruise with Dennis Clark. It performed

well during this test, but a couple of modifications to its operation are being performed now. In

particular the computer supplied with the system has had problems. These have been solved. We

have made the following modifications to the MPL system to improve the reliability:

• Added tilted front window to the case to allow water to run off more easily

and avoid retroreflection problems.

• Adding access panels to the Lidar box to enable us to check cabling and

other system problems more easily.

11
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• Replaced the computer supplied by SSEI with a notebook computer to al-

low more reliable operation. This will also significantly reduce the shipping

costs required for the system.

(iii)We have completed a study ofthe accuracywith which one can compute the radiance at

the top of the atmosphere from sky radiancemeasurements made at the sea surface.The results

suggestthat the bulk ofthe errorisgoverned by the uncertaintyinthe sky radiancemeasurements.

Furthermore, as itwas shown thatthe largesterrorin the radiativetransferprocesswas the error

due to the use of scalarradiativetransfertheory,we developed a an inversion/predictionmethod

using vector theory. We find that itis possibleto predictthe polarizationstate of the top-of-

atmosphere radiancequiteaccuratelyfrom surfacemeasurements. This may be very important for

validatingthe pre-launchpolarization-sensitivitycharacterizationofMODIS.

We completed definitionoftherequirementsforthe vicariouscalibrationofocean colorsensors

in general.This has been submitted forpublicationand isincludedhere as Appendix 3.

(iv) We have obtained small quantitiesof OCTS data and are working with R. Evans to test

the MODIS algorithmwith thesedata.

c. Data/Analysis/Interpretation:

(i)Since August 1993 we have been making aerosolopticaldepth measurements at three sites

occupied by the Atmosphere/Ocean Chemistry Experiment (AEROCE) in Miami, Bermuda, and

Barbados. Analysisof thisdata iscomplete. A draftpaper describingthe resultsof thisanalysis

isprovided here in Appendix 4.

(ii)We have describedthe design and operationof our sky camera (with the polarization

feature)in two publicationssubmitted to AppHed Optics. These papers alsoprovide samples of

data acquired at Miami. They are includedhere as Appendices 5 and 6.

In addition,we have begun processingthe MPL datafrom the February cruise.As an example

we show two figures.Figure 1 shows the MPL returnas a functionof time between 0300 and 0400

GMT on February 25, 1997. In thisfigurethe major aerosolislow, between 0 and 1 kin. Between

1 and 2 kilometersome fairlythincloudsappear and disappearthrough the night.Figure 2 isan

invertedLIDAR return.This isfrom the 6thminute ofthe hour shown in the time series.Obvious

in thisgraph isthe higheraerosolnear the surface,fallingoffto 1 kin,where a thin cloud appears

(1-2kin). The signalvery near the surface(0 -200 m) isnot availablebecause of the instrument

12
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self return. We are still learning how to process the data from the LIDAR, and will look at the

data collected during the February cruise and ACE-H during the next reporting period.

d. Anticipated Future Actions:

(i) We will be reinstalling the CIMEL in the Dry Tortugas at the first opportunity after its

return from NASA. We are also working on a better method of acquiring the data through NASA.

This will enable us to look at the sky radiance data in a more timely manner.

(ii) We will finish the data reduction work with the sky camera system in the next reporting

period. We are also reworking portions of this system to allow more automation of the data

collection, and fix minor problems which developed during the last cruise (specifically overheating

of the system computer and corrosion on the computer backplane). The reduced aureole data will

be merged with the sky radiance data to provide a complete sky radiance distribution during this

next period. We will also finish reducing all of the aureole data, and we will use the sky camera

and aureole camera during a cruise in July with Dennis Clark.

Much effort in this reporting period has gone toward getting ready to deploy the MPL in

Tenerife, Canary Islands during ACE-IT. This will occur during June and July and will give us a

chance to collect Lidar profiles along with CIMEL sun/sky radiometry and atmospheric chemistry

measurements from airplanes, surface and ships. In addition, another MPL is being deployed by

Dr. John Reagen at Univ. of Arizona so that simultaneous measurements will be obtained at

the surface, near the ocean, and at Izania, a mountain observatory. This data set should help us

determine the vertical structure of dust as it comes off of the Sahara. African Dust is an important

absorbing aerosol over the Atlantic. One goal of this work for 1997 is to begin obtaining a data

base of the thickness of the Saharan dust layer over the Tropical Atlantic.

(iii) We will apply our sky radiance inversion algorithm to actual data obtained at sea.

(iv) We will continue working with R. Evans on implementation of our atmospheric correction

algorithm on our RIO000 computer to facilitate fine-tuning the algorithm.

e. Problems/corrective actions: None.

13
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(NasaHeader) unit_number: 50

Record Number: 12

month: 2 day: 25 year: 97

hour: 3 minute: 6 second: 20 hund_sec: 0

trigger_freq: 2500

energy_monitor: 6.199000

detect_temp: 25.890000

filter_temp: 0.000000

box temp: 22.260000

laser_temp: 24.790000

ten_volt: 0.000000

five_volt: 0.000000

fifteen_volt: 0.000000

cbh: 0,000000

background: 0.318874
bintime: 500.000000

maxaltitude: 30.000000

deadtimecorrected: 0.000000

altitudeInt: 0.075000

numberBins: 400.000000

averageTime: 30.000000

numberRecords: 109.000000
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f. Publications: Several papers in various stages of the publication process are listed below.

D.K. Clark, H.R. Gordon, K.J. Voss, Y. Ge, W. Broenkow, and C. Trees, Validation of Atmospheric

Correction over the Oceans, Your. Geophys. Res. (In press).

K.J. Voss and Y. Liu, Polarized radiance distribution measurements of skylight: Part 1, system

description and characterization, Applied Optics (Accepted).

Y. Liu and K.J. Voss, Polarized radiance distribution measurements of skylight: Part 2, experiment

and data, Applied Optics (Accepted).

H. Yang and H.R. Gordon, Retrieval of the Columnar Aerosol Phase Function and Single Scattering

Albedo from Sky Radiance over Land: Simulations, Applied Optics (Submitted).

H.R. Gordon, In-orbit calibration strategy of ocean color sensors, Remote Sensing of Environment

(Submitted).
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6. Detached Coccolith Algorithm and Post Launch Studies (W.M. Balch).

a. Task Objectives:

The algorithm for retrieval of the detached coccolith concentration from the coccolithophorid,

E. huxleyi is described in detail in our ATBD. The key is quantification of the backscattering coeffi-

cient of the detached coccoliths. Our earlier studies focussed on laboratory cultures to understand

factors affecting the calcite-specific backscattering coefficient. A thorough understanding of the

relationship between calcite abundance and light scatter, in situ, will provide the basis for a generic

suspended calcite algorithm. As with algorithms for chlorophyll, and primary productivity, the

natural variance between growth related parameters and optical properties needs to be understood

before the accuracy of the algorithm can be determined. To this end, the objectives of our coccolith

studies during this reporting period months have been:

(1) Acquire optical field data on the distribution and abundance of coccolithophores in the

Gulf of Maine.

(2) Summarize our flow cytometerexperimentsforpublication.

(3) Publish earlierresultsfrom a 0.5millionsquarekilometercoccolithophorebloom.

For perspectiveon the directionsof our work, we provide an overview of our previous activ-

ities.During 1995, we focussedon chemotstat cultures(inwhich algalgrowth rate was precisely

controlled)and we examined how the opticalpropertiesofthesecalcifyingalgaechanged as a func-

tionof growth. During the latterhalfof 1995, our work focused on shipboard measurements of

suspended calciteand estimatesofopticalbackscatteringas validationof the laboratorymeasure-

ments. We participatedon two month-long cruisesto the Arabian sea,measuring coccolithophore

abundance, production,and opticalproperties.During the firsthalfof 1996, we focused again on

fieldcalcitedistributions,duringtwo Gulf ofMaine cruises,one in March and one in June. During

the second halfof 1996,we participatedon anothercruiseto the Gulf of Maine.

b. Work Accomplished:

I) We have processed samples for calcificationratesand chlorophyllconcentrationsfrom our

November 1996 Gulf of Maine cruise.We sampled for totaland calcite-dependentbackscattering

(continuously),suspended calciteconcentrations,calcificationrates,chlorophyllconcentrations,

coccolithophoreand coccolithcounts,and particulateorganiccarbon. The microscope work isstill

ongoing.

17
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2) We installed a new Argon-Ion laser in our Wyatt light scattering photometer and successfully

re-calibrated the instrument. The new laser will provide us with 514 nm wavelength light which is

more appropriate for the coccolithophore work.

3) We performed a pre-lannch MODIS cruise in the Gulf of Maine aboard the RV Albatross

under extremely bad weather conditions (up to 50 kt winds and 20 foot seas). We ran our un-

derway system for the entire trip (_., 1500 nautical miles) without a problem. On this cruise, we

provided sea truth radiance and irradiance data for the OCTS (with imagery coordinated with Dr.

Gene Feldman). We visited 60 stations, 28 of which were full optical stations (with measurements

of total backscattering, acid-labile backscattering, calcite concentrations, coccolithophore and coc-

colith counts). We had the Yentsch/Phinney group on board measuring spectral absorption, in

situ absorption/attenuation (AC-9), upweUing and downweUing irradiance (SATLANTIC TSRB

bio-optical sampler), dissolved organic matter absorption, and in situ backscattering (performed

by Dr. Ajit Subramanian).

4) Suspended calcite samples from the Gulf of Maine have been run in the graphite furnace

atomic absorption spectrometer at the University of Maine. We now only have samples from our

most recent cruise in June '97.

5) All cell and coccolith counts from the Arabian Sea were completed and the data from

process cruise 6 are being entered into spreadsheets at this time. We now are focussing on the

several hundred cell count samples from our recent Gulf of Maine cruises. This will take many

months to complete.

6) All calcification data from the March, June and November 1996 Gulf of Maine cruise have

been processed to units ofgC m -a d -1 and integrated over the water column at each station. They

have been processed into complete sections.

c. Data/Analysis/Interpretation:

Single cell experiments

We have focussed on data analysisfor our flow cytometer experiments. This work has en-

tailedthe processingof backscatteringcoefficientsof 8 speciesof calcifyingalgae,plated-withor

denuded-of coccoliths.We alsosorteddetached coccolithsof these differentspeciesfor bulk anal-

ysis.Followingmeasurements, the calcitewas measured using graphitefurnaceatomic absorption

spectrometry. These samples were run duringthe preceeding6 months at the Universityof Maine

Darling Center. The other aspectof thiswork was to sortcalciteparticlesfrom fieldsamples, and

18



Senli-Annual Report (1 January - 30 June 1997) NAS5-31363

to measure their scattering and calcite composition. The atomic absorption samples, too, were

processed in the last 6 months.

One ofthe interestingaspectsofthe flowcytometer analysiswas comparing backscatteringby

particulateinorganicand organicmatter to data by Morel. The resultsoforganiccarbon scattering

shows strikinglygood agreement with Motel'sdata. The consistentorganic carbon resultsallow

us to estimateboth inorganicand organiccarbon standingstockusingour flow-throughscattering

detector.The firstdraftofa manuscript has been writtenwhich summarizes theseresults.

Cruise results

Calcite-dependentbackscatteringwas quitehighinthe GulfofMaine duringJune, 1997;chloro-

phylllevelswere moderate. Calcitescatteringcommonly accounted for10-20% oftotalbackscatter-

ing.Interestingly,itwas highestover Georges Bank and in coastalwatersas opposed to Wilkinson

Basin, a stratifiedbasin in the middle of the Gulf of Maine. The underway data from the Gulf

ofMaine are being merged with our calibrationmeasurements (calibrationsare periodicallymade

at sea and these data are being processedto verifyinstrument calibrations).Hydrographic plots

of the Gulf of Maine data willbe made in which lightscatteringand chlorophyllare plottedin

temperature salinityspace.

The March, June and November cruisestothe GulfofMaine were processedto show the aerial

distributionand depth profilesof calcification.Interestingly,these resultsshowed that the shelf

watersnear the tipof Cape Cod tobe a "hotspot" forcalcification.We have observed thisbefore.

Georges Bank alsohad higher-than-expectedcalciteconcentrationsin June.

d. Anticipated Future Actions:

Work in the next year willaddressseveralareas:

I) Processingof the suspended calcitesamples from the June '97cruise.

2) Final analysis and write-up of our fall flow cytometer experiments.

3) Continued microscope cell/coccolithcountsforsamples from the Gulf ofMaine.

4) We willgo to sea in November on another Gulf ofMaine cruise.

e. Problems/Corrective Actions: None
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f. Publications- During this time reporting period, two papers have been revised for publication.

One dealing exclusively with the optics coccolithophores is included here as Appendix 7.

Voss, K., W. M. Balch, and K. A. Kilpatrick. Scattering and attenuation properties of Emiliania

huxleyi cells and their detached coccoliths. Revised for Limnol. Oceanogr.

Balch, W. M. and B. Bowler. Sea surfacetemperature gradients,baroclinicity,and vegetation

gradientsin the sea.In revisionforJ.Plank. Res.
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7. Other Activities.

The PI participated in the MOCEAN meeting in Miami in January, and met with A. Fleig

and K. Yang of SDST regarding MODIS Ocean test data sets. The PI worked with MCST and

SBRS to resolve the issue of proper measurement of the MODIS polarization sensitivity. The issue

was successfully concluded in early May. The PI participated in the MODIS Science Team meeting

in May, and reviewed the MSCT Level-lB processing algorithms.

Several papers were presented at the AGU Spring Meeting in Baltimore. They are provided

below.

H. Yang and H.R. Gordon, Retrieval of aerosol properties over land, EOS, Transactions, AGU, $70

(1997).

E.J. Welton, K.J. Voss, and J.M. Prospero, Radiative characteristics of specific types and concen-

tration of aerosols in the marine environment, EOS, Transactions, AGU, $88 (1997).

J.M. Ritter, K.J. Voss, and H.R. Gordon, A new instrument for shipborne radiometric measure-

ments of the solar aureole, EOS, Transactions, AGU, $93 (1997).
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8. Appendices

1. H.R. Gordon, T. Du, and T. Zhang, Remote sensing ocean color and aerosol properties: re-

solving the issue of aerosol absorption.

2. H. Yang and H.R. Gordon, Retrieval of the Columnar Aerosol Phase Function and Single

Scattering Albedo from Sky Radiance over Land: Simulations.

3. H.R. Gordon, In-orbit calibration strategy for ocean color sensors.

4. E.J. Welton, K.J. Voss, and J.M. Prospero, Long term aerosol optical depth analysis, Program

description and results (DRAFT).

5. K.J. Voss and Y. Liu, Polarized radiance distribution measurements of skylight: Part 1, system

description and characterization.

6. Y. Liu and K.J. Voss, Polarized radiance distribution measurements of skylight: Part 2, ex-

periment and data.

7. Voss, K., W. M. Balch, and K. A. Kilpatrick. Scattering and attenuation properties of Emil-

iania huxleyi cells and their detached coccoliths.
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Abstract

Present atmospheric-correction and aerosol-retrieval algorithms for ocean color sensors use

measurements of the top-of-atmosphere reflectance in the near infrared, where the contribution

from the ocean is known for Case 1 waters, to assess the aerosol optical properties. Such measure-

ments are incapable of distinguishing between weakly- and strongly-absorbing aerosols, and the

atmospheric correction and aerosol retrieval algorithms fail if the incorrect absorption properties

of the aerosol are assumed. In this paper we present an algorithm that appears promising for the

retrieval of in-water biophysical properties and aerosol optical properties in atmospheres containing

both weakly- and strongly-absorbing aerosols. Using the entire spectrum available to most ocean

color instruments (412-865 nm), we simultaneously recover the ocean's bio-optical properties and

a set of aerosol models that best describe the aerosol optical properties. The algorithm is ap-

plied to simulated situations that are likely to occur off the U.S. East Coast in summer, when

the aerosols could be of the locally-generated weakly-absorbing Maritime type, or of the pollution-

generated strongly-absorbing Urban type transported over the ocean by the winds. The simulations

show that the algorithm behaves well in an atmosphere with either weakly- or strongly-absorbing

aerosol. It successfully identifies absorbing aerosols and provides close values for the aerosol optical

thickness. It also provides excellent retrievals of the ocean bio-optical properties. The algorithm

uses a bio-optical model of Case 1 waters and a set of aerosol models for its operation. The relevant

parameters of both the ocean and atmosphere are systematically varied to find the best (in an RMS

sense) fit to the measured top-of-atmosphere spectral reflectance. Examples are provided showing

the algorithm's performance in the presence of errors, e.g., error in the contribution from whitecaps

and error in radiometric calibration.



1. Introduction

The Coastal Zone Color Scanner (CZCS) demonstrated the feasibilityof measuring marine

phytoplankton concentrationsfrom earth-orbitingsensors,t,2Based on the successof the CZCS,

severalsimilarinstrumentswith a higherradiometricsensitivityand a largernumber of spectral

bands, e.g.,the sea-viewingwide-field-of-viewsensor(SeaWiFS),z the moderate resolutionimag-

ing spectroradiometer(MODIS), 4 etc.,willbe launched in the near future. These ocean color

instruments willactuallymeasure the chlorophylla concentrationin the water as a surrogatefor

the phytoplankton concentration.In fact,the CZCS measured the sum of the concentrationsof

chlorophylla and itsdegradationproduct phaeophytin a. This sum was referredto as the pigment

concentration,C. Phytoplankton pigments have a broad absorptionmaximum in the blue (,,_435

urn)and a broad absorptionminimum in the green (_ 565 nm), and the CZCS derivedC from the

ratioof the radiancesbackscatteredout of the water (thewater-leavingradiance,L_,)near these

two wavelengths,s,6Typically,L_ isat most 10% of the totalradiance,Lt, exitingthe top of the

atmosphere (TOA) in the blue and < 5% in the green. Therefore,itisnecessaryto extract L_,

from Lt to deriveC. This processiscalledatmospheric correction.

The atmospheric correctionalgorithmdevelopedfor CZCS 6-t°isnot sufficientlyaccuratefor

the new generationof sensorswith higherradiometricsensitivity.Atmospheric correctionof these

sensorsrequiresincorporationofmultiple-scatteringeffects.Gordon and Wang tt't2developed such

an algorithmforSeaWiFS, and found thatthe multiple-scatteringeffectsdepended on the physical

and chemical propertiesof the aerosol(sizedistributionand refractiveindex).Therefore,incorpo-

rationofmultiplescatteringintoatmosphericcorrectionrequiredthe introductionofaerosolmodels

in the algorithm.

The Gordon and Wang algorithm is very simple to describe. The spectral variation in Lt

in the near infrared (NIR) spectral region, where L,# _ 0 in Case 1 waters, is used to provide

information concerning the aerosol's optical properties, as Lt there is due principally to Rayleigh

scattering (which is known) and to aerosol scattering. The Rayleigh scattering component is then

removed, and the spectral variation of the remainder is compared to that produced by a set of

candidate aerosol models in order to determine which two models of the candidate set are most



appropriate. These models are then used to estimate the multiple-scattering effects. Gordon l_-

has shown that this algorithm can provide L_ with the desired accuracy as long as the aerosol is

weakly absorbing (more accurately, the aerosol must be weakly absorbing and it must follow the

relationship between size distribution and refractive index that is implicitly implied in the choice

of the candidate aerosol models). Unfortunately, strongly-absorbing aerosols, e.g., aerosols from

anthropogenic urban sources or mineral dust transported from desert areas to the ocean, can possess

size distributions similar to the weakly-absorbing aerosols typically present over the oceans. As the

spectral variation of aerosol scattering depends mostly on the aerosol size distribution, and only

weakly on the index of refraction, the spectral variation of scattering in the NIR is not sufficient to

distinguish between weakly- and strongly-absorbing aerosols. Furthermore, in the case of mineral

dust an additional complication arises: the dust is colored, i.e., its absorption is a function of

wavelength. 13'14 Even if it were possible to estimate the absorption characteristics of mineral dust

aerosol in the NIR, one would still not know the extent of the absorption in the visible. This is a

particularly serious problem, as regions contaminated by mineral dust are often highly productive

and thus important from a biogeochemical point of view. In fact, dust deposition may actually

provide nutrients that enable the phytoplankton to bloom, is

The difficulty in detecting the presence of strongly-absorbing aerosols is that the effects of

absorption become evident only in the multiple scattering regime. In the single scattering regime,

the reflectance of the aerosol is proportional to the product of the single scattering albedo (w0)

and the aerosol optical thickness (r_), i.e., at small r, there is no way to distinguish nonabsorbing

aerosols (w0 = 1) with a given r_ from absorbing aerosols (iv0 < 1) and a larger ra. Retrieval

of information concerning aerosol absorption requires multiple scattering; however, this multiple

scattering need not be aerosol multiple scattering -- when a low concentration of aerosol exists

in the presence of strong Rayleigh scattering, e.g., in the blue, multiple Rayleigh scattering can

increase the length of photon paths through the aerosol and enhance the chance of absorption. Also,

if distributed vertically in the atmospheric column, the absorbing aerosol can reduce the Rayleigh-

scattering component, which is otherwise large in the blue. Thus, the possibility of inferring aerosol

absorption is increased as one progresses from the NIR into the visible, but unfortunately L_ is not

known there (that is why atmospheric correction is required in the first place). The inescapable

4



conclusion is that the SeaWiFS algorithm 11 must fail when the aerosol is strongly absorbing unless

the candidate aerosol models are restricted to those with similarly strong absorption properties. 12

In addition to atmospheric correction, there is compelling interest in studying the global dis-

tribution and transport of aerosols because of their role in climate forcing and biogeochemical

cycles. 16'1T Furthermore, not only is the aerosol concentration required, it is also important to

know their absorption properties to understand their climatic effects. There has been continuing

interest in measuring aerosol concentration from earth-orbiting sensors, ls-_4 Over the oceans these

sensors generally utilize spectral bands for which the ocean can be assumed to be black (L_ -- 0)

or at least to have constant reflectance. In complete analogy to the atmospheric correction problem

above, estimation of aerosol absorption properties from space fails for these sensors. The one excep-

tion is the retrieval of spatial distributions of an index indicating the presence of strongly-absorbing

aerosols using the Total Ozone Mapping Spectrometer (TOMS) measurements in the ultraviolet. 2s

In this paper, we describe an alternate approach to the problem of estimating oceanic bio-

physical properties for Case 1 waters, as well as the physical-chemical properties of the aerosol,

using space-borne ocean color sensors. The approach is similar in spirit to that developed by

Morel and coworkers 26,2T for CZCS, and that proposed by Land and Haigh 28 for deriving Case-2

water properties using SeaWiFS. It utilizes all of the spectral bands of the sensor. This insures

sufficient multiple-scattering (Rayleigh scattering in the blue) to enable identification of the aerosol

absorption, even at low aerosol concentrations. In order to separate the effects of aerosols from

radiance backscattered from beneath the sea surface (Lw), a Case-1 ocean-color model, in which the

reflectance is related to the phytoplankton pigment concentration and the scattering properties of

the phytoplankton and their associated detrital material, is used. As with the SeaWiFS algorithm,

several candidate aerosol models are employed: nonabsorbing, weakly absorbing, and strongly

absorbing. Through a systematic variation of the candidate aerosols, phytoplankton scattering,

C, and va, a "best" fit to simulated spectral Zt data is obtained. It is found that the algorithm

can successfully discriminate between weakly- and strongly-absorbing aerosols, and can provide

estimates of C, _'a, and we with an accuracy that is nearly independent of w0. For consistency with

earlier work, 1_- we specifically examine a situation that is likely to be encountered off the U.S. East



Coast in summer: polluted continental air transported by the winds to the Middle Atlantic Bight.

However, this situation is used only as an example to demonstrate the approach. We believe the

approach could be applied to oceanic regions subjected to mineral dust as well as aerosols resulting

from biomass burning, given appropriate models for such aerosols.

We begin with a discussion of the approach and the modeling of the various quantities required

for implementation. Next, we test the efficacy of the algorithm using simulated SeaWiFS 3 data.

Recall SeaWiFS has eight spectral bands centered at 412, 443, 490, 510, 555, 670, 765, and 865

nm. Finally, we examine the degradation of the performance of the algorithm in the presence of

Lt-measurement error.

2. The algorithm approach and implementation

Rather than radiance L, we will use reflectance p defined as _rL/FocosOo, where F0 is the

extraterrestrial solar irradiance, and 0o is the solar zenith angle. Then, neglecting the influence of

direct sun glitter, the total upweUing reflectance exiting the top of the atmosphere pt(A) consists

of the following components: H,12 the pure Rayleigh (molecular) scattering contribution p_(A), the

pure aerosol scattering contribution pa(A), the contribution due to the interaction effect between

air molecules and aerosols p_=(A), the contribution from whitecaps t(A)pw¢(A), and the desired

water-leaving contribution t(A)p_,(A), i.e.,

pt(_) : ._(_) + p°(_)+ p,o(_) + t(_)p=o(_)+ t(_)p=(_), (1)

where t(A) is the diffuse transmittance of the atmosphere. From the satellite image, we have the

spectrum of the upweUing reflectance Pt(A)- As p,(A) depends only on the surface atmospheric

pressure, 9'_9 given an estimate of t(A)p_,c(A) from a wind-speed estimate, it is not difficult to

remove the pure Rayleigh scattering and whitecap contributions p_(A) + t(A)p_c(A) from the total

reflectance pt(A),

[pt(_,)- p,(_,)- tC:_)p=o(_,)]: [p=(._)+ p,°(_)] + [t(:_)p,,,(_,)]. (2)



The known reflectancespectrum of [pt(A)-p_(A)- t(A)p_oc(A)]consistsoftwo partswhich arehard

to separate,the water-leavingreflectanceterm [t(A)pw(A)]and the aerosolcontribution[P=(A)+

p_=(A)] (which includesthe interactionterm between aerosolsand airmolecules). The goal of

atmospheric correctionisto retrievethewater-leavingreflectancep_(A) from the known reflectance

[pt(A)- p_(A)- t(A)p_c(A)].Because of the high spatialand temporal variabilityof the physical,

chemical,and opticalpropertiesof aerosols,it is difficultto estimate the aerosolcontribution

[p=(A)+ p_=(A)]to the totalupweUing reflectance.

The basic assumption of the proposed algorithm is that for each aerosol and pigment con-

centration there is a unique and distinctive spectrum characteristic of its upwelling reflectances

[p=(A) + p_=(A)] and [t(A)p_o(A)]. In a given sun-viewing geometry, similar (or close) spectra

to [p,(A)- p,(A) - t(A)p_,(A)] can only be obtained from the atmosphere-ocean system by a

combination of aerosols having similar optical properties to the actual aerosol, and a pigment con-

centration similar to that actually present in the ocean. That is, when we estimate [t(A)p_(A)] and

[p=(A)+ p,=(A)]separatelyand form [p=(A)+ p_( A)]'and It(A)p_(A)]',where here and henceforth

the primes willreferto computed or trialestimates,the computed reflectancespectrum

will fit the true reflectance spectrum [pt(A)- p,(A) - t(A)p_c(A)] in the visible and near infrared

only if the computed water-leaving reflectance [t(A)p_(A)]' and the computed aerosol contribution

[p=(A) + p_(A)]' fit their true values individually. In order to implement this idea, we need to

be able to obtain estimates of [t(A)p_(A)]' and [pa(A) + p_(A)]'. We now describe how this is

accomplished.

2.A The water component: tpw

The prediction of the water-leaving reflectance, pw(A), is effected using the semi-empirical bio-

optical radiance model, developed by Gordon et al. 3° for Case 1 waters, s'31 i.e., waters for which the

optical properties are controlled by the water itself and by the concentration of phytoplankton and



their decay products. Since we use the pigment concentration C as a surrogate for the phytoplank-

ton concentration, one would expect that the absorption and scattering properties of the particles

would depend only on C; however, it is found for such waters that for a given C the total scattering

coefficient varies by roughly a factor of two. s Thus, a second scattering-related parameter b°, which

ranges from 0.12 to 0.45 m -1 with a mean value of 0.30 m -1 (when C has units of rng/m3), is intro-

duced. Gordon et al. 3° found that by using such a model, the water-leaving radiance dependence on

C in Case 1 waters could be explained. Similar results were also obtained by Bricaud and Morel. 26

This bio-optical ocean color model actually provides the normalized water-leaving reflectance, 6,12

[p_(A)]y, defined by

= +  oz)/cos 00],

where r, and roz are the Rayleigh and Ozone optical thicknesses of the atmosphere, respectively.

Sample spectra of [pw()t)]N as a function of C and b° are shown in Figure 1. Clearly, the normalized

water-leaving reflectance is very sensitive to the pigment concentration C for short wavelengths (412

and 443 nm) and small pigment concentration (C _< 0.4 mg/m3). For longer wavelengths (555 and

670 nm) or large pigment concentrations (C _> 0.8 mg/m3), [p_,(A)]N does not depend significantly

on the pigment concentration C. It is taken to be zero at 765 and 865 nm.

It should be noted that the Gordon et al. 3° reflectance model above does not take into ac-

count the bidirectional effects of the sub-surface upweUed spectral radiance, i.e., it assumes that

the upweUing radiance beneath the sea surface is totally diffuse. Morel and co-workers s2-3s have

demonstrated that this is not the case; however, as Morel and Gentili 3s have shown, bidirectional

effects can be easily introduced into the model and described as a function of C (and, if necessary,

b°).

Once pw(A) is determined, it is necessary to propagate it to the top of the atmosphere (TOA).

As mentioned earlier, this is accomplished using the diffuse transmittance t(A). Tan_re et al. 3_

and Gordon et al. e provided simple expressions for t(A) that include the effects of both aerosol

and Rayleigh scattering. Later, Yang and Gordon 37 provided a detailed analysis of t(A) based on

precise computations. They showed that (1) bidirectional effects play a role in t only in the blue

and only at low C, (2) aerosols have a significant effect on t only if they are strongly absorbing, (3)

8
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Figure 1 Spectrum of normnlized water-leaving reflectance [p_(A)]N for pig-
ment concentrations of 0.1, 0.5, and 1.0 mg/m 3. For each pigment concen-
tration, from the upper to the lower curves, the values of coefficient b° are

0.45, 0.30, and 0.12 m -1, respectively.

t is independent of the aerosol vertical structure even if the aerosol is strongly absorbing, and (4)

given an aerosol model it is simple to predict the correct value of t for any aerosol concentration

and viewing geometry. The value of t can be computed precisely given C (to provide bidirectional

effects), an aerosol model (to provide the aerosol properties), and the aerosol optical thickness r_(A)

(to provide the aerosol concentration). However, for the purposes of this paper, we will approximate

t by assuming it is independent of the aerosol. In this case, t(A) is given by

= exp + ,'oz)/cos0 ], (a)

where 8,, is the angle between the zenith and a line from the sensor to the pixel under consideration.

Thus, the simulated t(A)p_,(A) is given by

t(A)p,,,(A) = [O,,,(A)]Nexp -(r_(A)/2 + to,) _ + _ . (4)

9



2.B The aerosol component: pa + p,a

Gordon and Wang 11 have shown that the multiple scattering effects in pa + p.a depend signif-

icantly on the physical and chemical properties of the aerosol, i.e., their size distribution and their

refractive index. Thus aerosol models have to be introduced to incorporate multiple scattering

effects in atmospheric correction. Similarly, aerosol models are also required to retrieve aerosol

properties from space observations. 3s,39 Gordon and Wang 11 used aerosol models that were devel-

oped by Shettle and Felm 40 for LOWTRAN-6. 41 These models consist of particles distributed in

size according to combinations of two log-normal distributions, and are described in detail in Ref.

12. Briefly, four models at four different relative humidities are used here. These are the Maritime

(M), the Coastal (C), the Tropospheric (T), and the Urban (V). The relative humidities used are

50%, 70%, 90%, and 99%. We denote a particular model by a letter and a number, e.g., M99 refers

to the Maritime model at 99% relative humidity (RH). There is an increasing amount of absorp-

tion as one progresses through M,C,T, to U. For example, at 865 nm the aerosol single-scattering

albedo, w0, is 0.9934, 0.9884, and 0.9528, respectively, for the Maritime, Coastal, and Tropospheric

models (RH = 80%), while in contrast, w0 = 0.7481 for the Urban model. Here, the Urban model

is intended to represent the strongly-absorbing aerosols that might be present over the oceans near

areas with considerable urban pollution, e.g., the Middle Atlantic Bight off the U.S. East Coast in

summer. Table 1 provides the absorption properties of the candidate aerosol models and the test

aerosol models at 865 urn. Note the coarse resolution in w0 for the Urban models compared to the

others.

We employ these sixteen aerosol models as candidates to test the algorithm. For a two-layer

atmosphere, with the aerosol confined to the bottom layer, the scalar radiative transfer equation

(polarization ignored) was solved for each of the 16 candidate aerosol models (M, C, T, U aerosols

with RH = 50%, 70%, 90%, 99%) with eight values of r_()_) in the range of 0.05 to 0.8 at each

wavelength )_, for solar zenith angle 80 = 0 ° to 80 ° in increments of 2.5 °, and for 33 different viewing

zenith angles with 8_ in the range of 0 ° to 90 °. It is difficult to have this large computational set

of values of [Pa(A)+ P,a(A)] available for image processing for all of the aerosol candidates, aerosol

optical thicknesses, sun-viewing geometries (80,8_,¢., where ¢,, is the azimuth of the viewing

10



direction relative to the sun), and spectral bands; therefore, in a manner similar to the Gordon and

Wang algorithm, 12 lookup tables (LUTs) are used to provide [p=(A) + p_a(A)]. In the Gordon and

Wang algorithm the lookup tables related [p,,(A) + p_=(A)] to p=o(A), the single scattered aerosol

reflectance. Equivalently, we relate the term [p=(A) + p_a(A)] to the aerosol optical thickness ra;

our simulatedvaluesof [p,.(,X)+ p,.=(,X)]are fit to

[po(,X)+ :,,.(_,)] : a(_) _-,.+ b(_,)_-_+ c(,X),-_+ d(,x)_-_ (5)

using least-squares. To further reduce storage, coefficientsa(A), b(A), c(A) and d(A) were expanded

in Fourier seriesin the relative-azimuth view-angle ¢., and only the Fourier coefficientswere stored

in the LUTs. Samples of the fitof [p=(A) + p_=(A)] to the aerosol optical thickness are presented

in Figure 2 for a sun-viewing geometry with O0 = 60 °,0, _ 46 °,and ¢, _ 93 °. This geometry has

relativelylarge errors in the fitscompared to the other geometries used here. It can be seen that

the method of using Eq. (5), and Fourier expanding its coefficients,isappropriate for computing

[p_(A) + p_(A)] for any candidate aerosol model, at any sun-viewing geometry, aerosol optical

thickness, and wavelength. The largestfittingerrors occurred at the largest wavelength (A = 865

nm) and small aerosol optical thickness (r= _ 0.1). They were of the order of i% to 2%.
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Figure 2(a) Curve/its of [p.(A)+ p,=(A)] vs.
r= for aerosol models of M70, C70, T70 and
U70 at A = 443 nm with 0o = 60.0 °, 0v =
45.92 ° , and _, = 93.49 °.
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Figure 2(b) Curve fitsof [p=(A) + p,=(A)] vs.
r= for aerosol models of M70, C70, T70 and
U70 at A = 865 nm with 00 = 60.0 °,0_ =
45.92 °, and _ = 93.49 °.
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2.C The algorithm implementation

We experimented with several approaches for implementing the algorithm. The one we found

most effective is summarized as follows:

First, for the given sun-viewing geometry (00, #., ¢_), we vary the value of aerosol optical thick-

ness at 865 nm, %(865), for each candidate aerosol model to provide the aerosol component

[P_(,_) + p,a(A)]'. We then vary the pigment concentration C and the scattering-related coef-

ficient b° to provide the water-leaving reflectance [t(A)p_,(R)]'. These yield a trial upwelling

reflectance [p_(_) - p_()_)- t()_)p_c(_)]' at each of N bands of the ocean color sensor.

Second, we compute the percent deviation 6' of this simulated spectrum [pc(A) - p.(A) -

t(A)p_c(A)]' from the measured true spectrum [pt()_) - p,(A) - t(A)pwc()_)] over the N spectral

bands for each test set (A, ra, C, b°) t, where A labels the candidate aerosol model. The percent

deviation 6(A, ra, C, b°) _ is defined in the sense of root-mean-squares,

6(A, %, C, b°) ' = 100%×

Third, we sort the deviations 6(A,_'a, C, b°y to find the best ten sets of (A, ra, C,b°) ' which

yield the ten smallest percent deviations 6(A, 7"_,C, b°) _.

Fourth, as the correct aerosol model is unlikely to be identical to one of the candidates, we

assume the characteristics of aerosols and pigment concentration can be adequately described

by these best ten sets of parameters (A, v_, C, boy. The retrieved single scattering albedo w_

and optical thickness r a' of the aerosols, and b°_ and the pigment concentration C _ in the ocean

are then computed by averaging w_, ra' , b°' and C' over the best ten sets of (A, v_, C, b°) '.

We considered applying standard multivariable minimization techniques 4_ to find the smallest 5';

however, due to the discrete nature of the candidate models, this would have yielded at best the

12



minimum 6'foreach testmodel A. Using the algorithmdescribedabove,we found that unlessthe

actualaerosolwas very closeto one of the candidatemodels, the minimum of 6' was shallow,so

the model yieldingthe minimum was not necessarilymuch betterthan other models with small

changes in the parameters. Furthermore, we observed that itwas rare that only one candidate

model was chosen among the ten best,i.e.,the nthbestforone A might be superiorto the best for

another A. Were the candidatemodels dense,inthe sensethat the actualaerosolwould always be

closeto one of the candidates,multivariableminimizationtechniqueswould have been used.

3. The algorithm's performance

In thissection,we examine the performance of the algorithm by applying it to simulated

SeaWiFS 3 data. The sun-viewinggeometriesare taken as those used in Refs. 11 and 12: viewing

at the centerof the scan (viewingzenithangle 8_ _ 1°) for solarzenithangle 80 = 20°,40° and

60°,and viewing at the edge of the scan (0_ _ 45°) near the perpendicularplane (_ = 90°) for

8o = 00,20%400 and 60°. These covermuch of the range of sun-viewinggeometries availableto

SeaWiFS. Pseudodata areprovided by solvingthe scalarradiativetransferequation fora two-layer

atmosphere system with a specifiedaerosolconfinedin the lower layer.The pseudo water-leaving

reflectancep_(A) was provided forb° --0.30m -I (themean valueforCase I waters)sand pigment

concentrationsC = 0.1,0.5,and 1.0mg/m 3.

The algorithm attempts to match the pseudodata spectrum of pt(A) - p,(A) - t(A)p_c(A)

by varying the aerosolmodel among the 16 candidates(NA = 16),the aerosolopticalthickness

r_(865)from 0.01 to 0.40 in increments of 0.01 (N_ = 40),the pigment concentrationfrom 0.05

to 1.50mg/m 3 in increments of 0.05 mg/m 3 (Nc = 30),and finally,5° from 0.12 to 0.45m -I in

increments of 0.03 m -I (Nb -- 12). The totalnumber of elements in the testset (A,_'_,C, b°)'is

N = NA x N_.x Nc xNb-- 16X40X30x 12=230,400.

For the firsttestof the algorithmwe examined casesin which the aerosolopticalproperties

of the pseudo atmosphere were includedin the candidateaerosolmodels, i.e.,the aerosoloptical

propertiesinthe atmosphere system were takenfrom M70, C70, T70 and U70. The opticalthickness
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at 865 nm was taken to be ra(865)= 0.I,0.2or 0.3.The main purpose ofthiswas to testthe code

forimplementation of the algorithm.In allcases,for the best set(smallest8')the correctaerosol

model and the correctvaluesof the parameters were chosen. In fact,6'for the correctset was a

smallfractionofa percentand -_10 to 30 timessmallerthan the secondbest set.The residualerror

was due to small errorsin the LUTs caused by the least-squaresand Fourieranalysis.Even the

averagesoverthe best ten setswere excellent,providingclosevaluesof r_(865),b°,and C. As the

aerosolsinglescatteringalbedo w0 isa weak functionof wavelength A, we use the retrievedvalue

at 865 nm, w0(865),(averagedoverthe bestten sets)as an indicationof the algorithm'sabihty to

distinguishbetween weakly- and strongly-absorbingaerosols.The derivedvaluesofw0(865) showed

that weakly- and strongly-absorbingaerosolsare easilyrecognizedby the algorithm.

As itisunlikelyforthe aerosolsin the atmosphere willhave exactlythe same opticalprop-

ertiesas any one of candidate aerosolmodels, we testedmore realisticcasesin which the aerosol

models were similarto,but not the same as any of,the sixteencandidateaerosolmodels. Follow-

ing Gordon 12the aerosolmodels MS0, C80, T80 and U80 (Shettleand Fenn models with relative

humidity 80%) were chosen forthispurpose (TableI).We begin by describingthe resultsobtained

from averaging the parameters from the setswith the ten smallestvaluesof _I. The averaged

w_(865), r_(865), and C' for a given geometry are taken to be the retrieved values of these param-

eters. To estimate the performance on a more global scale, i.e., for the full range of sun-viewing

geometries, we then average over all seven sun-viewing geometries and compute the mean and the

standard deviation in the retrieved parameter values. The mean values of retrieved aerosol single

scattering albedo w_(865) are provided in Table 2 for a pseudo atmosphere characterized by the

aerosol models MS0, C80, TS0 and US0. It can be seen from Table 2 that the retrieved results

for w0 are very good for each of the four pseudo aerosol models. Large percent deviations (the

standard deviation over the seven geometries divided by the mean) in the range of 3% to about

8%, are encountered for the strongly absorbing US0 aerosol model, because of the coarse resolution

in the value of w0 for the candidates (Table 1). Nevertheless the algorithm can distinguish between

the weakly absorbing aerosols (M80, C80, T80) and the strongly absorbing aerosol (US0) without

difficulty.
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Since the ultimate goal of ocean color remote sensing is to estimate the phytoplankton pig-

ment concentration, we now examine the retrieval of C using the algorithm. Table 3 presents the

mean values of retrieved C _, which are averaged over seven sun-viewing geometries and also over

the four test aerosol models, M80, C80, T80, and U80 (28 cases in all). It can be observed that

the retrieved results of pigment concentration are reasonable for all three tested aerosol optical

thicknesses [ra(865) = 0.1, 0.2, and 0.3] and all three pigment concentrations [C = 0.1, 0.5, and

1.0 mg/m3]. For the small pigment concentration, C = 0.1 mg/m 3, or for small aerosol optical

thickness, r_(865) = 0.1, the spectrum-matching algorithm still works very well. With an increase

in either pigment concentration or aerosol concentration, the percent deviations and percent er-

rors in the retrieved C t become larger. For comparison, Table 4 provides similar results for the

weakly-absorbing aerosols only, using the Gordon and Wang correction algorithm. 1_ Note that the

present algorithm behaves as well as the Gordon and Wang algorithm, even when strongly-absorbing

aerosols are included. Had strongly-absorbing aerosols been included in Table 4, the results would

have been significantly poorer, e.g., in many cases it would have been impossible even to compute

C because one or both of the required pw(443) and p_,(555) would be negative.

Detailed retrievals of the pigment concentration C are tabulated in Table 5, which gives per-

centages of cases with relative error in the retrieval, IAC]/C, less than 5%, 10%, 20%, and 30%,

respectively. For the smallest pigment concentration, in all of the 84 cases examined (three aerosol

optical thicknesses, four aerosol models, and seven sun-viewing geometries), IACI/C was always

< 20%, and even < 5% for about 90% of the cases. For a pigment concentration of C = 0.5

mg/m 3, and for small aerosol optical thickness, %(865) = 0.1, all individual simulations have

IACI/C < 30%, while for r=(865) = 0.2 there are about 89% of the cases having IACI/C < 30%,

and for v,,(865) = 0.3 about 75% of the cases having IACI/C < 30%. At the highest pigment con-

centration examined (1.0 mg/m3), for small aerosol optical thickness the algorithm still performs

very well with only three cases with tACI/C > 30%. However, as r=(865) increases, the errors

become larger, and about 71% of the cases have IACI/C < 30% for %(865) = 0.2, and only about

60% for r,(865) = 0.3.
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The algorithm clearly works better in estimating C for smaller pigment concentrations. This

is explained by the relationship between the (normalized) upweUing water-leaving reflectance and

the pigment concentration (Figure 1). As we showed in Section 2, the water-leaving reflectance

depends strongly on pigment concentration C when C is small (C _< 0.4 mg/m3). At small C, a

small change in C (0.05 mg/m 3 in the algorithm) will result in a significant change in the upwelling

water-leaving reflectance. But when pigment concentration is as large as about 1.0 mg/m 3, the

upweUing water-leaving reflectance is only a weak function of pigment concentration, and a small

change of 0.05 mg/m 3 in C does not result in a significant change in the upwelllng water-leaving

reflectance. This causes the larger percent deviation in C when the algorithm is applied to larger

pigment concentrations.

Mean values of the retrieved aerosol optical thickness r_(865) over the seven sun-viewing ge-

ometries and four testing aerosol models (M80, C80, TS0 and US0) are presented in Table 6.

The mean values are close to their corresponding "true" aerosol optical thicknesses, the percent

deviations range from about 6% to about 11%.

Figure 3 provides samples of the three best sets (A, v_, C, be) determined by the algorithm for

aerosol models of M80, C80, T80 and US0 with _'_(865) = 0.2 and C = 0.5 mg/m 3, for a single

sun-viewing geometry (80 = 20 °, 8. = 45.92 °, ¢, = 90°). As the pseudo aerosol models (MS0, C80,

TS0 and US0) are similar to the candidate models used in the algorithm, (M, C, T, and U with RH

= 50%, 70%, 90% and 99%), but are not identical to any of 16 candidates, there is no correct aerosol

model for the algorithm to choose to match the upweUing reflectance [Pa(_)+ Pra(_)] + [t(.k)p,,,(_)].

The figure shows that the aerosol models which have similar optical properties to those of the test

aerosol models are selected first by the algorithm. Even though there are some errors caused by

picking the incorrect aerosol models, the pigment concentration chosen by the algorithm is close

to its true value (0.5 mg/m 3 in Figure 3). For the four pseudo aerosol models tested, the percent

deviations of the best match for whole spectrum 6(A,r_, C, b°) ' varied from about 0.7% to 1.1%.

Unlike the case when the test aerosol was one of the candidates, there was no significant increase in
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6' from the best set to the second best set, etc. For the best 10 sets, the largest percent deviation

for C = 0.5 mg/m 3 is about 1.5%.

Figure 3 also shows the reason for our basic assumption that a good fit is obtained only if the

spectra of tp_ and [Pa + P_]' individually fit tpw and Pa + P_: the spectral shapes of p_ + p_

(Figure 3, lower curves) and tp_, (Figure 1) are usually quite different. This is particularly true for

low valuesofC.
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From these testsof the algorithm we conclude that it can detect the presence of strongly

absorbing aerosolssuccessfully.Whenever the opticalpropertiesof aerosolin the atmosphere are

the same (orveryclose)tothatofany ofthe 16 candidateaerosolmodels employed in the algorithm,

the retrievedpigment concentrationC willbe excellent,meeting the requirementsof SeaWiFS and

MODIS. Iftheopticalpropertiesofthe aerosolintheatmosphere aresimilarto thatofany candidate

aerosolmodel, the retrievalresultsforthe pigment concentrationC willstillbe good inthe presence

of small pigment concentrationor small aerosolopticalthickness.When both largeaerosoloptical

thickness [va(865) around 0.2 to 0.3] and large pigment concentration [C around 0.5 to 1.0 mg/m 3]

are present in the atmosphere-ocean system, the performance of the algorithm is degraded. Still, for

the worst scenario examined here, va(865) = 0.3 and C = 1.0 mg/m 3, about 60% of the individual

simulations have IAC]/C < 30%. Note that when va(865) = 0.3, va(443) = 0.347, 0.395, 0.745, and

0.620, for M80, C80, T80, and U80, respectively, i.e., r_ can be very large in the blue, particularly

for T80 and U80.

These simulationssuggestthatthe successofthe algorithmdepends on the appropriatenessof

candidate aerosolmodels and the bio-opticalmodel employed in the algorithm.Although we will

not be abletoknow the percenterrorsin the retrievedaerosolsinglescatteringalbedow_ (865)and

pigment concentrationC _in processinga satelliteimage, i.e.,we do not know the correstanswer,

we can compute 6(A,_'_,C, b°)_over allbands which are used forocean colorremote sensing.This

providesone measure ofthe qualityof the retrievals.Also,we can compute the percent deviations

forretrievedw_(865) and C' overthe ten bestmodels. Our resultssuggestthatwhen the deviation

in a retrievedquantityissmall,itsretrievalismore accurate.

4. Inclusion of the aerosol vertical distribution

As mentioned in Section 1, when the aerosol is strongly absorbing, p_ + p,_ depends signif-

icantly on the aerosol's vertical distribution (Figure 4). In the simulations presented here, the

correct vertical distribution was assumed, i.e., the pseudodata were created using the same vertical

distribution as was assumed for the candidate aerosol models. It is reasonable to expect that the
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verticaldistributioncan be introducedintothe algorithmdescribedin Section2 simply as new can-

didateaerosolmodels, e.g.,the U70 model with allofthe aerosolin the marine boundary layerand

the U70 aerosolmodel with the aerosoluniformlymixed with airthroughout the entireatmosphere

would representtwo distinctcandidateaerosolmodels. This hypothesisistestednext.

As the verticaldistributionofthe aerosolisimportant only ifitisstronglyabsorbing,we wi]_l

considerverticalstructureonly in the Urban models. In additionto the candidate Urban models

500 600 700 800

_. (nm)

Figure 4. Influenceof the physical thick-

ness of the aerosollayeron the spectrum of
Pa + p,_. For U80 the aerosolisconfinedto

a thinlayernear the surface,while forUI80,

U280, U480, and UU80, the aerosolisuni-

form.lymixed with airto a heightof I kin,2

kin,4 km, and the whole atmosphere,respec-

tively.Viewing isnear nadir and 80 = 60%

consideredin Section 3, where the aerosolwas allin the lower layerof a two layer atmosphere

with allofthe Rayleigh scatteringconfinedto the upper layer,we now introducethreenew vertical

distributions:(1) the aerosolisuniformlymixed with airfrom the surfaceto an altitudeof 2 km

(21% of r_ in the lower layer);(2)the aerosolisuniformlymixed with airfrom the surfaceto an

altitudeof 4 km (39% of r_ in the lower layer);and (3) the aerosolisuniformly mixed with air

throughout the entireatmosphere (allof r_ accompanies the aerosolin a one-layeratmosphere).

These distributionsfor aerosolopticalmodels U50, UT0, U90, and U99, constitute12 candidate
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aerosol models in addition to the 16 candidates in Section 3. Thus, for the algorithm tests described

below in this section, there are a grand total of 28 candidate aerosol models.

To test the algorithm's ability to deal with aerosol vertical structure, we created pseudodata

using the US0 aerosol optical model with vertical structures similar to the candidate aerosol models,

i.e., the aerosol mixed uniformly with air to an altitude of 2 km (U280), 4kin (U480), and uniformly

mixed with air throughout the atmosphere (UU80). Figure 4 provides an example of the strong

dependence of Pa ÷ P,a on the vertical distribution of the aerosol for va(865) = 0.2 and the Urban

aerosol models with RH = 80%. It is important to note from Figure 4 that an uncertainty of ±1

km in the thickness of the aerosol layer results in an uncertainty of ,,, 7=0.002 in pa + p_ at 443

nm, i.e., equal in magnitude to the maximum acceptable uncertainty in Pw. Also, measurement of

p_ + p_ in the NIR provides virtually no indication of the aerosol vertical structure even when the

physical-chemical properties of the aerosol are known. As in the earlier sections, seven sun-viewing

geometries were investigated. The results of these tests can be summarized as follows:

(1) The algorithm had no difficulty in concluding that the aerosol was strongly absorbing;

however, the range in the retrieved w0 was from 0.606 to 0.821 (i.e., pure UT0 to pure U90)

over the seven geometries, three vertical structures, and three values of r_(865), compared with

the range 0.699-0.793 for US0 from Table 2. Thus, when vertical structure was included in the

candidate aerosol models as described here, the actual value of w0 was not as accurate. The

additional parameter (vertical distribution) provides an extra degree of freedom that allows w0

to take on a wider range of values, and still provide a small _'.

(2) For C = 0.1 and 0.5 mg/m a, the aerosol models that were chosen in the ten best were nearly

always all from the set with vertical structure, i.e., the candidates with the aerosol all at the

bottom of the two-layer atmosphere were rarely chosen. The weakly-absorbing aerosol models

were never among the best 10.
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(3) For C = 1 mg/m S, many of the UU80 retrievals were very poor, e.g., the retrieved C' was

,,_ 0.15 mg/m S. In these cases, the UU70 candidate, which has too much absorption, was always

chosen, requiring a smaller C to provide the additional reflectance needed in the blue. Similarly,

for lower C, the UU80 cases tended to provide poorer results than the others; however, in all of

these cases with poor retrievals, _' tended to be ,,_ 5-10 times larger than typical. These poor

retrievals did not occur with the U280 and U480 cases, and probably could be avoided by using

candidate models with a finer grid in w0 (Table 1).

(4) The mean values of the retrieved C over the seven geometries and three vertical distributions

are shown in Table 7. The means are quite good (largest error _ 30%), but the deviations are

larger than those in Table 3. However, note that this table includes the sometimes-very-poor

results for UUS0 described in (3).

(5) The distribution of AC/C, as provided in Table 8 indicates that the error compares favorably

with the corresponding error in Table 5. The fraction of retrievals with IAC/CI less than a

specified amount is smaller when vertical structure is included; however, unlike Table 5, which

also includes weakly-absorbing aerosols in the statistics, these statistics include only strongly-

absorbing aerosols.

(6) The retrieved mean values of r_(865) show a small (,-_ +5%) bias; however, the dispersion

of r_(865) over the seven geometries and three vertical structures is slightly less than those in

Table 6.

These results all pertain to a situation in which the aerosol vertical structure was identical

to that for some of the candidate models, although the aerosol optical model (size distribution

and refractive index) was not among the candidate set. For completeness, we provide an additional

example in which the pseudodata were created using the U80 aerosol optical model with the aerosol

uniformly mixed to an altitude of 1 kin. Thus, for this case, which we refer to as U180, neither

the aerosol vertical structure nor the aerosol optical model are represented within the 28-member
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candidate aerosolset.The resultsof thesesimulationsare provided inTables 9-12,and show that

the algorithmperforms very wellin thisparticularsituation.

The two testspresentedin thissectionsuggestthat verticalstructureforabsorbing aerosols

can be handled by includingcandidate verticaldistributionswithin the candidate aerosolmodel

set. In fact,consideringthat the resultspresented are for only strongly-absorbingaerosols,the

performance of the algorithmisexcellent.

5. Effects of error in pt - p, - tpwc

In the absence ofsun glint,thereare two important errorsthat can influencethe performance

of the algorithm: (I) errorin pt(A)resultingfrom the sensor'sradiometriccalibrationerror;and

(2)errorin p_c(A) resultingfrom natural "noise''43in the relationshipbetween p_c and the wind

speed. Here, we examine the effectsof theseerrors.

5.A Error in p_(A)

There willalways be some errorinthe radiometriccalibrationof the sensor.The specifications

forMODIS and SeaWiFS requirethatthe uncertaintyin the prelaunch calibrationbe lessthan 5%

and 10% respectively.As the goal isto recoverthe water-leavingradiance (reflectance)with an

errorof _ i 5% at 443 nm in clearocean water,e.g.,the Sargasso Sea in summer, where under

such conditionsthe water-leavingradianceisexpected to contribute_ 10% to Lt(443), a 5-10%

errorin Lt isclearlyunacceptable. Thus, in-orbitcalibrationadjustments are required.44 Evans

and Gordon t° describedmethodology used to perform such adjustments for CZCS, and Gordon 12

sketched a possibleprocedure forSeaWiFS and MODIS. In principle,Gordon's SeaWiFS/MODIS

procedure should be capable of reducing the calibrationuncertaintyin the blue to 0.5%. In fact,

by simultaneouslymeasuring p_(A), p_c(A),and r4(A),Gordon 4s argued that for MODIS with a

prelaunch calibrationuncertaintyof±5%, itshouldbe possibleinprincipleto reducethe calibration

errorsof the other bands to those shown in Table 13, and to insurethat the residualcalibration

errorsallhave the same signas the errorat 865 nm. This ispossiblebecause of the known, and
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rapidly increasing with decreasing wavelength, contribution of p_ to pt. Here, we assume that this

procedure has been effected and the sensor has the calibration errors of magnitude shown in Table

13.

We added positive and negative calibration errors to the pt pseudodata described in Section 3

for the M80, C80, T80, and U80 aerosol models, and operated the algorithm. Generally, there were

no large changes in the results. As before, the algorithm had no difficulty distinguishing between

strongly- and weakly-absorbing aerosols. The statistics of the distribution in _,C/C were similar

to those in Table 5. The derived r= followed the expected trend, i.e., positive error led to greater

values of r=. As an example of the retrieved pigment concentration statistics, Table 14 provides

the mean C and its standard deviation over the 28 cases in the absence and presence of calibration

errors. We see that the effect of the calibration error is to increase the dispersion with only minor

changes in the mean values. This insensitivity to residual calibration errors results from the fact

that they are small in the blue (Table 13).

5.B Error in p,_c(A)

The whitecap reflectance contribution tp_c can be estimated given the wind speed. 43,46 Gordon

and Wang 4s show that tp_¢ is given by

=

where [pwc(,_)]lv is the average increase in the reflectance of the ocean (over several pixels) at the

sea surface, resulting from whitecaps in the absence of the atmosphere. It can be thought of as

the product of the albedo of an individual whitecap and the fraction of the sea surface covered by

whitecaps, t(0v, ,_) is given in Eq. (3) and t(00, R) is also given by Eq. (3) with 0. replaced by 90. In

the visible, for a wind speed of 10 m/s [p_¢(A)]N 'varies from -,_ 0 to 0.004 with a mean of --_ 0.002. 4s

Thus, given a wind speed of 10 m/s, the prediction of [P,_,c()_)]N would be 0.002 ±0.002 in the

visible. The spectrum of [p_c(A)]N was originally taken to be white; 43 however, measurements by

Frouin et al. 47 in the surf zone suggest that the reflectance may decrease considerably in passing

from the visible to the NIR. Using the Frouin et al. 47 whitecap spectrum, we investigated the
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behaviorof the algorithm for the M80, C80,T80, andUS0test models, given a =t=0.002 error in

[P_c()_)]N in the visible when removing tpw¢ from Pt. The simulations showed that the presence of

a strongly-absorbing aerosol could still be established with ease; however, w0 was larger (smaller)

for a positive (negative) error in tpwc. The variation in w0 was ,-- ±5% for the U80 test. Conversely,

7"awas smaller (larger) for a positive (negative) error in tp_c. The magnitude of the changes in

ra was _-. 10-15% for all the test models. The variation in ra is easy to understand. If [P_c]N is

overestimated, then p_ + p._ will be too small, leading to a value of r_ that is too small.

The average values of C' were not strongly influenced by the error in [P_¢]N. This can be seen

in Tables 15 and 16 for error in [Pwc]N, A[p_c]_v, in the visible of +0.002 and -0.002, respectively.

These should be compared to Table 3 for A[p_,¢]N = 0. The whitecap error causes a variation of

_10-15% in C' at the higher pigment concentrations, but has little effect at C = 0.1 mg/m 3. The

distributions of [ACt/C < a given fraction actually improve for A[p_,c]N = +0.002, e.g., for C = 1

mg/m 3 and r_ = 0.3, the fraction with ]ACI/C < 30% was 53, 60, and 82% for A[pwc]y = -0.002,

0, and +0.002, respectively.

Examination of the individual retrievals shows that in the case of the strongly-absorbing

aerosols, the bias introduced by the whitecap error causes the same incorrect aerosol model to

be always chosen among the best ten, e.g., either UT0 or U90 was always chosen when the correct

model was US0. This biases the individual retrievals of C, w0 and ra to be always too high or too

low, and thus the averages are as well. This effect may be reduced by increased resolution in the

model values of we. Similar effects were observed in the case of sensor calibration errors (Section

5.A)

These simulations suggest that the algorithm is not overly sensitive to error in removing the

whitecap reflectance component from pt.

6. Discussion

Present atmospheric correction algorithms for ocean color sensors operating over Case 1 waters

use measurements of the TOA reflectance in the NIR, where the contribution for the ocean is
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known, to assess the aerosol optical properties. Such measurements are incapable of distinguishing

between weakly- and strongly-absorbing aerosols, and atmospheric correction fails if the incorrect

absorption properties of the aerosol are assumed. 12 Similarly, algorithms for extracting aerosol

properties from passive space-borne sensors operating in the red and Nil{ are also incapable of

detecting absorption, 4s because the aerosol component of the TOA reflectance is proportional to

the scattering optical thickness (_v0_'a), i.e., _v0 cannot be separated from 7"a. However, it has been

shown that it is possible to retrieve spatial distributions of an index indicating the presence of

strongly-absorbing aerosols using the Total Ozone Mapping Spectrometer (TOMS) measurements

in the ultraviolet, 2s where there is significant multiple scattering even in the absence of aerosols.

The effect of aerosol absorption on the TOA reflectance becomes stronger as multiple scattering

increases. This suggested to us that it would be possible to determine aerosol absorption using ocean

color sensors only by utilizing observations in the blue, where unfortunately, the contribution to

the TOA reflectance by the aerosol and by the radiance exiting the ocean are comparable. Thus,

utilizing the blue portion of the spectrum requires simultaneous determination of the water-leaving

reflectance and the aerosol's contribution to the TOA reflectance.

In this paper we have presented an algorithm that appears promising for the retrieval of in-

water biophysical properties and aerosol optical properties in atmospheres containing both weakly-

and strongly-absorbing aerosols. Using the entire spectrum available to most ocean color instru-

ments (412-865 n.m), we simultaneously recover the ocean's bio-optical properties and a set of

aerosol models that best describe the aerosol optical properties. As an example, the algorithm

has been applied to situations that are likely to occur of the U.S. East Coast in summer, when

the aerosols could be of the locally-generated weakly-absorbing Maritime type, or of the pollution-

generated strongly-absorbing Urban type transported over the ocean by the winds. Through sim-

ulations, we show that the algorithm behaves as well in an atmosphere with weakly- or strongly-

absorbing aerosol as the Gordon and Wang n algorithm does in an atmosphere with only weakly-

absorbing aerosols. In contrast to earlier algorithms, 28-2s the present algorithm successfully iden-

tifies absorbing aerosols and provides close values for their optical thickness.
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The algorithm requires a bio-optical model of the ocean 3° and a set of aerosol models for

its operation. The parameters of the bio-optical model and the aerosol models are systematically

varied to find the best (in an RMS sense) fit to the measured TOA spectral reflectance. It is

critical that the aerosol models be representative of the aerosol expected to be present over the

given area, e.g., the Urban models used here would not be expected to yield useful retrievals in a

region subjected to absorbing mineral dust. 14 Also it is necessary that aerosol models encompass

the range of aerosol vertical distributions expected. As adequate bio-optical models are available

only for Case 1 waters, s'26'3°'49,s° the present algorithm would not operate successfully in Case 2

waters; however, given region specific models for Case 2 waters, comparable performance may be

possible as long as the spectral variation of p_, and Pa 4- p,_ are sufficiently different.2s Fortunately,

Case 1 waters include most of the open ocean.

A general observation from examining the individual retrievals (both weakly- and strongly-

absorbing and vertically distributed) is that for low C, the algorithm will generally choose a value

of C that is close to the correct value with very little dispersion over the ten best sets. This owes

to the fact that the p_,(A) is a very strong function of C and A for small C (Figure 1), and this

provides a strong constraint on the range of values possible. Thus, using the nearly correct C, the

algorithm apparently varies the aerosol model and 7"a seeking the optimum set. This results in a

larger dispersion in "ra and _v0 than in C. In contrast, for large C, where p_,(A) depends weakly

on both C and A (Figure 1), and is small itself, the aerosol model typically provides the stronger

constraint, and w0 along with _',_ are retrieved with small dispersions, while the algorithm optimizes

6 t by varying C' and b°. This causes a larger dispersion in C _. Generally, we find that the quantities

with low dispersion over the ten best sets are retrieved more accurately than quantities with a large

dispersion.

We intend to utilize this algorithm for processing SeaWiFS and MODIS imagery. In its present

research implementation the algorithm is very slow because a brute-force determination of the best

ten sets of parameters is employed. However, alternative formulations are faster. For example, as

we know p_,(865) = 0, pa(885) + p_o(865) can be retrieved unambiguously from the imagery. For a

given aerosol model the value of 7"_(865) that yields the retrieved p_(865) 4. pra(865) Can be found
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directly. Thus,for eachmodel these is really no reason to vary r,(865). When 16 aerosol models

are used, this reduces the number of elements in the testing set from 230,000 to 5760. The resulting

solution will not be identical to the method based on minimizing 6' in Eq. (6), because now for each

set the residual error at 865 nm will be exactly zero, i.e., in Figure 3 every set would exactly pass

through the point at )_ = 865 nm. We have used this method to examine the test cases in Section 3

and, as expected, the results are not identical to those presented earlier (Tables 2, 3, 5, and 6), but

there are no significant differences. To further reduce the number of test sets, we used the Gordon

and Wang 11 algorithm to preselect models. Based on their spectral variation in the NIR, the

Gordon and Wang algorithm operationally selects the best four models from the set of candidates.

Employing this for the tests in Section 3 reduced the number of test sets by an additional factor of

four to 1440. Again, there were no significant differences compared to the earlier results. We note,

however, that as vertical structure is irrelevant to the spectral behavior in the NIR (Figure 4), if

strongly-absorbing models are chosen by the Gordon and Wang algorithm, models with the same

optical characteristics but different vertical structures should be included in the test set. For the

examples in Section 4 there were a total of 28 models used as candidates, leading to 403,200 test

sets; with the two improvements above, this would be reduced to 3600 assuming the Gordon and

Wang algorithm would choose two strongly-absorbing and two weakly-absorbing aerosol models.

This is the approach we intend to use for SeaWiFS and MODIS.

In reality, we see no need to apply the new algorithm on a pixel-by-pixel basis. We believe a

viable strategy would be to employ it at the center of N x N pixel regions, where N _ 10 - 100, to

determine the best aerosol models, and then use the faster Gordon and Wang 11 algorithm, with a

restricted set of models that are determined by the new algorithm. This strategy assumes that the

only property of the aerosol that changes within the N x N region is the aerosol concentration.

A possible method for improving the algorithm is to use the linear-mixing model of Wang

and Gordon, sl as improved by Abdou et al., 52 and vary the mixing ratios of a fixed set of aerosol

components, rather than using a fixed set of aerosol models. This is similar in spirit to the Land

and Haigh 2s approach. Wang and Gordon 39 have shown that such a method holds promise for
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estimatingthe sizedistributionof weakly absorbingaerosolsusing simulatedMulti-angleImaging

Spectroradiometerssdata.
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Figure Captions

Figure 1. Spectrum of normalized water-leaving reflectance [p_(A)]N for pigment concentrations of

0.1, 0.5, and 1.0 mg/m 3. For each pigment concentration, from the upper to the lower curves, the

values of coefficient be are 0.45, 0.30, and 0.12 m -1, respectively.

Figure 2. Curve fits of [pa()_) ÷ p,a(A)] vs. ra for aerosol models of M70, C70, T70 and U70 with

#0 = 60.0 °, 8. = 45.92 °, and ¢_ = 93.49 °. Panel (a): 443 nm; panel (b): 865 nm.

Figure 3. Reflectance spectrum matching for pigment concentration C = 0.50 mg/m 3 with sun-

viewing geometry of 90 = 20.0 °, 8_ = 45.92 °, and ¢_ = 90.0 °. Panel (a): M80; panel (b): C80;

panel (c): TS0; panel (d) U80.

Figure 4. Influence of the physical thickness of the aerosol layer on the spectrum of p= ÷ P,a- For

U80 the aerosol is confined to a thin layer near the surface, while for U180, U280, U480, and UUS0,

the aerosol is uniformly mixed with air to a height of 1 km, 2 km, 4 km, and the whole atmosphere,

respectively.
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Table 1: Values of wo at 865 nm for the candidate and test aerosol models.

Candidate Models Test Models

RH=50% RH=70% RH=90% RH=99% RH=80%

M 0.9814

C 0.9705

T 0.9295

U 0.6026

0.9859

0.9768

0.9346

0.6605

0.9953

0.9919

0.9698

0.8206

0.9986

0.9974

0.9870

0.9419

0.9934

0.9884

0.9528

0.7481

Table 2: Mean values of retrieved w_(865) for the seven sun-viewing geometries

and each of four aerosol models (M80, C80, TS0, U80). The standard

deviation divided by the mean is listed in parenthesis.

M80

Wo = 0.993

C: mg/m 3

_o(865)= O.lOO
_o(865)= 0.200

0.100 0.5OO

0.992 (0.43%)

0.995 (0.10%)

0.996 (0.14%)

0.995 (0.10%)

1.000

0.997 (0.10%)

0.996 (0.05%)

r=(865) = 0.300 0.996 (0.05%) 0.996 (0.06%) 0.996 (0.10%)

C: mg/m 3 0.100 0.500 1.000

c80 _o(865)= O.lOO
wo = 0.988 ro(865) = 0.200

.o (865) = o.300

0.980 (0.97%)

0.983 (0.53%)

0.987 (0.25%)

0.972 (1.60%)

0.988 (0.31%)

0.987 (0.27%)

0.965 (2.26%)

0.989 (0.41%)

0.987 (0.37%)

C: mg/m 3 0.100 0.500 1.000

TS0 7"=(865) = 0.100 0.952 (0.78%) 0.935 (0.13%) 0.935 (0.00%)

wo = 0.953 Ta(865) = 0.200 0.946 (0.34%) 0.936 (0.44%) 0.940 (1.41%)

v,(865) = 0.300 0.945 (0.31%) 0.934 (0.04%) 0.945 (1.82%)

C: mg/m a 0.100 0.500 1.000

U80

wo = 0.748

_o(865)= O.lOO 0.793 (4.21%) 0.761 (4.51%) 0.769 (3.36%)

7-=(865) = 0.200 0.730 (4.76%) 0.750 (8.25%) 0.712 (7.44%)

r_(865) = 0.300 0.730 (5.14%) 0.784 (2.56%) 0.699 (7.34%)



Table 3: Mean values of retrieved C' for seven sun-viewing geometries

and four aerosol models (M80, C80, T80, U80). The standard

deviation divided by the mean is listed in parenthesis.

C: mg/m 3 0.100 0.500 1.000

r,(865) = 0.100 0.100 (1.90%) 0.528 (7.30%) 1.098 (il.7%)

r,(865) = 0.200 0.101 (4.56%) 0.547 (15.2%) 0.982 (23.9%)

ra(865) = 0.300 0.101 (4.42%) 0.612 (24.1%) 0.947 (31.3%)

Table 4: Mean values of retrieved C' for seven sun-viewing geometries

and three aerosol models (MS0, C80, TS0) derived using

the Gordon and Wang 11 algorithm. The standard deviation

divided by the mean is listed in parenthesis.

C: mg/m 3 0.10 0.47

r,(865) = 0.100 0.101 (1.6%) 0.466 (3.4%)

ra(865) -- 0.200 0.100 (3.1%) 0.470 (4.7%)

 o(865)= 0.300 0.098 (5.5%) 0.493 (15.3%)

0.91

0.912 (9.1%)

0.940 (12.8%)

0.936 (25.3%)



Table 5: Percentage of retrieved pigment concentration C' within certain

error limits for aerosol models M80, C80, T80, and U80.

AC/C : < 5% < 10% < 20% < 30%

r_(865) = 0.100 96% 100% 100% 100%

C : 0.1 mg/m 3 v,,(865) : 0.200 89% 92% 100% 100%

v_(865) = 0.300 89% 92% 100% 100%

AC/C : < 5% < 10% < 20% < 30%

ra(865) = 0.100 32% 75% 92% 100%

C = 0.5mg/m a va(865)= 0.200 32% 50% 75% 89%

va(865) = 0.300 25% 35% 64% 75%

AC/C : < 5% < 10% < 20% < 30%

r,(865) = 0.100 21% 50% 71% 96%

C = 1.0mg/m 3 r_(865)= 0.200 28% 39% 57% 71%

ra(865) = 0.300 14% 25% 50% 60%

Table 6: Mean valuesofretrievedr_(865)for seven sun-viewinggeometries

and fouraerosolmodels (M80, C80, T80, U80). The standard

deviationdividedby the mean islistedin parenthesis.

C: mg/m 3 0.100 0.500 1.000

v,(865) = 0.100 0.102 (8.94%) 0.101 (10.2%) 0.102 (11.6%)

r,(865) = 0.200 0.201 (6.31%) 0.199 (8.53%) 0.199 (8.20%)

r,(865) = 0.300 0.300 (6.22%) 0.294 (8.79%) 0.300 (9.93%)



Table 7: Mean values of retrieved C for seven sun-viewing geometries

and three aerosol models (UUS0, U280, U480). The standard

deviation divided by the mean is listed in parenthesis.

C: mg/m 3 0.100 0.500 1.000

v,(865) = 0.100 0.103 (8.74%) 0.600 (29.11%) 1.054 (19.27%)

%(865) = 0.200 0.114 (17.51%) 0.574 (39.12%) 1.026 (35.13%)

r.(865) = 0.300 0.125 (32.93%) 0.644 (57.33%) 0.863 (52.53%)

Table 8: Percentage of retrieved pigment concentration C within certain

error limits for aerosol models UU80, U280 and U480.

C = 0.1mg/m 3

AC/C :

r,,(865)= 0.100

,.(865) = o.2o0

< 5%

85%

< 10%

85%

< 20% < 30%

95% 95%

71%57% 57% 80%

ra(865) = 0.300 57% 57% 61% 61%

ACIC: < 5% < 10% < 20% < 30%

r,(865) = 0.100 28% 52% 71% 90%

C = 0.5 mg/m S r,(865) = 0.200 38% 57% 66% 66%

r,(865) = 0.300 23% 38% 66% 66%

AC/C : < 5% < 10% < 20% < 30%

r,,(865) = 0.100 47% 66% 71% 76%

C = 1.0 mg/m _ r.(865) = 0.200 19% 38% 52% 61%

r,(865) = 0.300 4% 28% 52% 57%



Table 9: Mean values of retrieved w0(865) for seven sun-viewing geometries

of aerosol model U180. The standard

deviation divided by the mean is listed in parenthesis.

C: mg/m 3 0.100 0.500 1.000

U180 ra(865) = 0.100 0.764 (4.81%) 0.787 (6.82%) 0.787 (4.88%)

wo = 0.748 ra(865) = 0.200 0.737 (3.24%) 0.737 (8.84%) 0.723 (13.50%)

r_(865) = 0.300 0.736 (4.31%) 0.727 (4.39%) 0.714 (8.86%)

Table 10: Mean values of retrieved C for seven sun-viewing geometries

of aerosol model U180. The standard

deviation divided by the mean is listed in parenthesis.

C: mg/m 3 0.100 0.500 1.000

ra(865) = 0.100 0.100 (0.00%) 0.556 (7.15%) 1.094 (8.53%)

v_(865) = 0.200 0.100 (0.00%) 0.544 (8.74%) 1.101 (16.12%)

r_(865) = 0.300 0.100 (0.00%) 0.566 (3.04%) 1.061 (15.11%)



Table 11: Percentage of retrieved pigment concentration C within certain

error limits for the aerosol model U180.

C = 0.1 mg/m s

AC/C :

7°(865) = 0.100
_.(865) = 0.200
_-o(865)= 0.300

< 5% < 10% < 20%

lOO% lOO% lOO%

100% 100%

100% 100%

< 30%

100%

100% 100%

i00% 100%

AC/C: < 5% < 10% < 20% < 30%

ra(865) = 0.100 28% 42% 71% 100%

C = 0.5 mg/m s ra(865)= 0.200 14% 42% 100% 100%

ra(865) = 0.300 0% 14% 100% 100%

AC/C: < 5% < 10% < 20% < 30%

ra(865) = 0.100 28% 57% 85% 100%

C = 1.0mg/m s ra(865)= 0.200 0% 28% 57% 100%

28% 28%7°(865) = o.30o 71% lOO%

Table 12: Mean values of retrieved v_(865) for seven sun-viewing geometries

of the aerosol model U180. The standard

deviation divided by the mean is listed in parenthesis.

C: mg/m 3 0.100

_-o(865)= 0.100 0.102 (1.68%)
_-.(865)= 0.200 0.206 (3.49%)
_.(865)= 0.300 0.305 (3.32%)

0.500 1.000

0.101 (3.62%) 0.099 (3.83%)

0.206 (2.89%) 0.209 (7.59%)

0.307 (2.52%) 0.304 (7.36%)



Table 13: Values of the residual radiometric calibration uncertainty

after effecting an in-orbit calibration adjustment. 48

Ai % Uncertainty

412 0.3

443 0.5

490 0.8

520 1.0

550 1.5

670 2.0

765 3.0

865 5.0

Table 14: Mean values of the retrieved C for the seven sun-viewing geometries

and each of four aerosol models (M80, C80, T80, US0) for the indicated

calibration error (Table 13). The standard deviation divided by the mean

is listed in parenthesis. 1"a(865) = 0.2.

Calibration C (mg/m 3)

Error 0.100 0.500 1.000

+ Error 0.102 (4.3%) 0.539 (15.1%) 0.976 (21.2%)

0 Error 0.I00 (3.1%) 0.470 (4.7%) 0.940 (12.8%)

- Error 0.100 (5.7%) 0.534 (15.9%) 1.029 (23.3%)



Table 15: Mean values of retrieved C for seven sun-viewing geometries

and four aerosol models (M80, C80, TS0, US0) for A[p_,c] = +0.002.

The standard deviation divided by the mean is listed in parenthesis.

C: mg/m 3 0.100

va(865) = 0.100 0.100 (0.00%)

r,(865) = 0.200 0.101 (4.68%)

ra(865) = 0.300 0.102 (6.97%)

0.500 1.000

0.455 (9.54%) 0.838 (19.89%)

0.485 (15.72%) 0.891 (23.44%)

0.526 (18.80%) 0.843 (25.55%)

Table 16: Mean values of retrieved C for seven sun-viewing geometries

and four aerosol models (MS0, C80, T80, U80) for A[p_c ] = -0.002.

The standard deviation divided by the mean is listed in parenthesis.

C: mg/m 3 0.100 0.500 1.000

ra(865) = 0.100 0.100 (0.94%) 0.647 (12.83%) 1.175 (18.21%)

va(865) = 0.200 0.100 (2.32%) 0.644 (17.53%) 1.030 (24.13%)

r,.(865) = 0.300 0.101 (4.96%) 0.699 (24.94%) 0.985 (31.03%)
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Abstract

This paper centers on a retrieval scheme which can be used to derive the aerosol phase function

and single scattering albedo from the sky radiance over land. The retrieval algorithm iteratively

corrects the aerosol volume scattering function, the product of the single scattering albedo and

the phase function, based on the difference between the measured sky radiance and the radiance

calculated by solving the radiative transfer equation. It is first tested under ideal conditions, i.e.,

the approximations made in the retrieval algorithm totally agree with actual conditions assumed in

creating the pseudo data for sky radiance. It is then tested under more realistic conditions to assess

its susceptibility to measurement errors and effects of conditions not recognized in the retrieval

algorithm, i.e., surface horizontal inhomogeneity, departures of the surface from lambertian, and

aerosol horizontal inhomogeneity. These simulations show that, in most cases, this scheme can

retrieve the aerosol single scattering albedo with high accuracy (within 1%), and can therefore be

used to identify absorbing aerosols. It can also produce meaningful retrievals of most aerosol phase

functions: less than 5% error at 865 um and less than 10% at 443 nm in most cases. Typically, the

error in the volume scattering function is small for scattering angles _ 70 ° -80 °, then increases for

larger angles. Disappointing results in both the single scattering albedo and the scattering phase

function occur at 443 nm, either when there are large calibration errors in the radiometer used to

measure the sky radiance, or when the land reflection properties are significant inhomogeneous.
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1. Introduction

Aerosols are of considerable interest today because of their role in biogeochemical cycling

and climate} -3 Thus, several space-borne visible and near infrared (NIR) remote sensing systems

have been planned that are capable of delineating their global distribution: the Moderate Resolu-

tion Imaging Spectrometer (MODIS), 4 the Multi-angle Imaging SpectroRadiometer (MISR), s the

polarization and directionality of earth reflectance (POLDER), 6 etc. However, interpretation of

the remotely sensed top-of-atmosphere (TOA) radiance contributed by the aerosol in terms of its

physical-chemical, or even optical, properties requires the use of aerosol models. T's These aerosol

models can be physicM-chemical, in which the size distribution and index of refraction of each

aerosol component is specified (on the basis of direct measurementsg), and the optical properties

derived from Mie theory; 1°,11 completely optical, in which the aerosol phase function and single-

scattering albedo are specified spectrally; or a combination of the two. Similarly, aerosol models are

also required for atmospheric correction to enable remote sensing systems to retrieve the spectral

reflectance of the earth's surface. 12'13

An aerosol network (AERONET) 14 has been established for the purpose of obtaining the

optical properties of aerosols under a wide variety of conditions. This network consists of robotic

radiometers that measure the radiance of the direct sun and the angular distribution of the sky

radiance. Thus far, analysis of this data has focused on the inversion of the aerosol optical thickness

and solar aureole radiance, using methods developed by Nakajima, is to study the aerosol size

distribution. 1_ The resulting size distribution is then used with Mie theory to derive the aerosol

phase function. One desirable advantage of this is that the columnar aerosol optical properties are

obtained, quantities that would be very difficult to obtain by direct sampling.

In earlier papers, Gordon, Wang, and coworkers showed how the sky radiance, 17'1s or a combi-

nation of the sky radiance and the TOA radiance, 19'2° could be used to retrieve the columnar aerosol

phase function and single-scattering albedo directly, without the necessity of Mie theory. The basic

Wang and GordonlTalgorithm is an extension of the work of Wendisch and yon Hoyningen-Huene. 21

Briefly, the sky radiance is computed by solving the radiative transfer equation (RTE) with an ini-

tial input of an arbitrary aerosol volume scattering function (product of the phase function and

single-scattering albedo). Recursive procedures are then applied to correct the trial volume scatter-

ing function based in the difference between the calculated and measured sky radiance. The RTE



is solved at each iteration, so the final solution contains all the effects of multiple scattering. Sim-

ulations show that the algorithm can successfully retrieve the single-scattering albedo and aerosol

phase function even when the aerosol optical thickness is as high as 2. x9

The Wang and Gordon algorithm was originally designed to facilitate the retrieval of the

aerosol single scattering albedo and phase function over the ocean, and until now, has not been

modified for operation over the land. There are intrinsic differences between ocean surfaces and

land surfaces. First, land surfaces are much brighter than ocean surfaces. They more strongly

influence the sky radiance; therefore, they are expected to have a negative impact on retrieval.

Second, the bidirectional reflectance distribution functions (BRDF's) for land surfaces are much

more complicated than those for ocean surfaces. The BRDF's for the ocean surface in the NIR can

basically be described by a universal relationship, the only variable in which is the wind speed. 22-24

No such relationship exists for land surfaces.

In this paper, the Wang and Gordon algorithm is modified for application over land for re-

trieving the aerosol single scattering albedo and volume scattering function. First, we illustrate

the basic procedure of the retrieval algorithm. Next, we provide simulation results of the assuming

measurements are made under ideal conditions and are error-free. Finally, we assess the effects on

the retrievals of measurement errors and various conditions which may exist in practice, yet are not

taken into account in the retrieval algorithm, including surface horizontal inhomogeneity, aerosol

horizontal inhomogeneity, and a non-Lambertian surface.





2. Basic Procedure of the Retrieval Algorithm

The totalopticalthicknessof the atmosphere includesthe opticalthicknessof Rayleigh scat-

tering,r_,the opticalthicknessof aerosolscattering,r,, the opticalthicknessof the ozone layer,

roz, and the opticalthicknessofotherabsorbinggases,rg. r_ isvery stable,and given the surface

pressure,can be computed at each wavelength.2srg,even though not so stable,isinsignificantex-

ceptinabsorptionbands. Ifone performsmeasurements between the absorptionbands of absorbing

gases,% can generallybe neglected.2s Ozone absorptionoccursthroughout the visibleand cannot

be neglected.Also, roz ishighlyvariable.However itcan be measured with space-borne sensors,

e.g.,TOMS. 2rTherefore,itispossibletoobtainthe aerosolopticalthicknessby subtractingr_ and

roz from the measured totalopticalthickness.Thus, we willassume that ra can be obtained in

thismanner.

The basic procedure in the algorithm is as follows.

1) Measure the sky radiance, the aerosol optical thickness (Figure 1), and the land albedo.

2) Calculate the sky radiance by solving the RTE using an arbitrary aerosol volume scattering

function, the measured aerosol optical thickness, and land albedo.

3) Adjust the aerosol volume scattering function based on the difference between the measured

sky radiance and the calculated sky radiance.

4) Interpolate and extrapolate the adjusted volume scattering function and use it to recalculate

the sky radiance.

5) Repeatedly apply Steps (2), (3) and (4).

The volume scattering function V is defined as follows:

v( 0-. -- (i)

where w0 isthe singlescatteringalbedo and P is the scatteringphase function.(This definition

differsfrom the ordinarydefinitionofthe volume scatteringfunction,2s/3,the differentialscattering

crosssectionper unit volume, by a factorof c,which isthe extinctioncoefficient:/3= cV). The

centerpiecesof implementing the above algorithmare to (1)develop a computer code to solvethe



radiativetransferequation (RTE) for radiance given an aerosolvolume scatteringfunction,and

to (2) establisha relationshipbetween the errorin the volume scatteringfunction,AVa(®), and

ALt(_), the differencebetween the calculatedradianceand the measured sky radiance.

To solve the RTE, we make the following assumptions and approximations. First we assume

that the aerosol and Rayleigh scattering are confined between parallel planes. Also, since in reality

about 80% of the aerosols are confined to a layer extending approximately two kilometers above the

ground or the ocean, and about 80%-90% of the Rayleigh scattering is distributed above the aerosol

layer, 29 we assume that the atmosphere is divided into two layers. The upper layer is exclusively

Rayleigh scattering and the lower layer contains only aerosols. The above atmospheric model is

known as the two-layer plane-parallel model. The ozone layer and other absorbing gases have been

neglected. The ozone layer can be conveniently treated as a fully absorptive layer above the top

of the atmosphere, and therefore can be easily incorporated into the retrieval algorithm. As for

other absorbing gases, one can generally choose the wavelength windows between strong absorption

bands of absorbing gases, where the effect of absorbing gases are not significant. For these reasons,

the omission is not regarded as significant. We further assume that the land surface as well as the

atmosphere is horizontally homogeneous, and that the land surface is Lambertian. With the above

approximations and assumptions, one can solve the RTE using the successive order method. 21 The

details of implementing this method are provided by Van de Hulst. 3°

Now that we can solvethe RTE, the next challengeisto findthe relationshipbetween AV_

and ALt. It issometimes desirableto distinguishbetween the radiance resultingfrom Rayleigh

scatteringand the radianceresultingfrom aerosolscattering.The totalradiance may be divided

intothe followingterms:

Lt = L,.e -_'a/_' + L,,e -_'r/_° + Lr,,, (2)

where L_ is the radiance contributed by Rayleigh scattering in the absence of aerosol scattering, L,.

is the radiance contributed by aerosol scattering in the absence of Rayleigh scattering, and Lr_ al

is the radiance contributed by the interaction between aerosol scattering and Rayleigh scattering.

and/_0 are, respectively, the cosines of the viewing zenith angle and solar zenith angle.

Suppose the sky radiance is simulated with an aerosol volume scattering function different from

the true one. The calculated sky radiance is naturally different from the measured sky radiance,

6



i.e.,

ALt(_,) -- L_"_)(_i)- L_C)(_i), (3)

where L_ m) is the measured sky radiance, L_ c) is the calculated sky radiance and _i is the ith viewing

direction. None of ALt(_i) results from pure Rayleigh scattering. Therefore,

AL_(_i) = AL,,(_,)e-"r/"o + AL,a(_,). (4)

Divide La into single scattering radiance, La,, and multiple scattering radiance, L_,,, and further

divide La5 into single scattering radiance in the absence of a surface, Laa0, and a surface contri-

bution, La,. Since the interaction term is usually smaller than the other terms when the aerosol

optical thickness is small, it is neglected:

aL,(_,) = a[Lo.0(_,)+ La.(_,) + Lo_(_,)]e-_./.o (5)

Assume that the error in the total aerosol scattering is allocated to La,0, L_,, and L_m based on

their values:

Lo,0(_,) - Lo,,(_,) - Lo(_,) -Lo(_,)e--./,0 (6)

Since

we have

Lo.o(_)= F°.oV_(O,),--_ (7)

AV_(Oi) AL_(&)

vo(e,) - Lo(_,)_-../_o'

where ®i is the scattering angle from the solar beam to the ira viewing direction, _i.

(8)

The assumption made in Eq. (6) is not accurate. Indeed, usually more error is made in

proportion to aerosol multiple scattering than to single scattering. Also, if the aerosol optical

thickness is high, one cannot neglect the interaction term. Therefore, Eq. (8) is not precise. If it is

used without modification in the iterative procedure illustrated at the beginning of this section, the

calculated sky radiance often diverges instead of converging to the measured sky radiance. To solve

this problem, we devised a self-adjusting constant C to ensure the convergence of the calculated

radiance:

[vo(o,)](:,% v. (°)= [ o(e,)]ot_- ca[vo(o_)](°), (9)

where AlVa(6),)](c) is AV=(Oi) calculated in Eq. (8), [V=(Oi)](_ ) is the volume scattering function

used in the previous iteration, and IV. ((9 .ll(c)L a_ ,n-e_, is the new trial volume scattering function. The



initial value of C is set to one. In each iteration, the algorithm keeps track of the previous average

value of ]ALt(_i)/[L(C)(_i)e-_/uo]l" ff it increases, which suggests that the IV_(C)(®i)[ is over-

corrected, C is decreased by half. When there are relatively large errors in the measurements, C

may get too small. In this case C is reset to 1.

The retrieval algorithm is almost complete up to this point. However, it is necessary to define

certain conditions to terminate the iteration. The conditions used in the retrieval algorithm are (1)

the average absolute percentage difference between the measured sky radiance and the calculated

radiance in all measurement directions is smaller than a certain threshold value (0.1%), and the

maximum percentage difference is smaller than twice that value, or (2) the number of iterations

exceed a certain value (100). Once the iteration stops, the single scattering albedo and phase

function are obtained by applying the following equations:

wo = f4,_ V.(O)df2, (10)

Pa(O) = 4w V"(O). (11)
_gO

Other than the fact that the lower boundary of the medium is a Lambertian reflector as

opposed to a Fresnel reflector, there are a few differences between the above-illustrated retrieval

algorithm and the original Wang and Gordon algorithm for use over the ocean. First, Eq. (8) is

slightly different from the basic equation used in the Wang and Gordon algorithm. In the Wang

and Gordon algorithm, the denominator on the right hand side of Eq. (8) is Lt(_i ) - Lr(_i)e-_./_ "o.

The difference is not regarded as significant. Second, the constant C remains the same in the

Wang and Gordon algorithm. The value of C is determined empirically. The assignment of C as a

self-adjusting variable not only reduces the number of iterations in each run, but also reduces the

amount of testing necessary to determine an optimum C. Finally, the Wang and Gordon algorithm

is terminated after a certain number of iterations. The design to terminate the iteration based on

the relative error in the sky radiance also improves the efficiency of the retrieval algorithm.



3. Basic Simulation Results

3.1 Simulation of the Sky Radiance

To evaluate the performance of the retrieval algorithm, we used simulated measurements. How-

ever, we do take into consideration the practicality of these measurements so that they can be made

in real situations. The radiance in the simulated measurements is obtained by solving the RTE. A

variety of aerosol models with different aerosol optical thicknesses have been used to generate the

pseudo data for the sky radiance. The performance of the retrieval algorithm is evaluated by com-

paring the retrieved volume scattering function with the aerosol volume scattering function used

in creating the pseudo data, henceforth referred to as the true aerosol volume scattering function.

The proposed measurements of sky radiance include almucantar measurements and principal

plane measurements. In the almucantar measurements, one first aims the detector directly at the

sun (#_ = 80, ¢_ = 0). While keeping the zenith angle of the detector fixed, one increases the

azimuth angle, ¢_, of the detector by fixed increments until it reaches 180 °. Subsequent to the

aimucantar measurements, one keeps the azimuth angle of the detector at 180 ° in the principal

plane measurements, and increases the zenith angle of the detector by fixed increments until it is

almost horizontal. Figure 1 shows the geometry of the measurements.

The solar zenith angle is fixed to be

60 ° in all cases. The increments in both the

almucantar measurements and the princi-

pal plane measurements are set to 5 ° . The

almucantar measurement at ¢_ = 0 is ex-

cluded, because it's impossible in actual

measurements to separate the scattered light

from the direct sun light when the detector

points at the sun. Two additional measure-

ments are taken in the almucantar mea-

surements at ¢_ = 3° and ¢_ = 7° in order

to obtain more informationon the aerosol

Ray_l_

Aerosol

..................

Figure 1. DownweUing radiance measure-
ment.

volume scattering function at small angles, since most aerosol phase functions are strongly for-

ward peaked. At ¢,_ = 3 °, (0_ = 60 °) the scattering angle from the sun to the detector is 2.59 °.
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This isthe smallestangle at which a volume scatteringfunctionisobtained from measurements.

The volume scatteringfunctionatscatteringanglessmallerthan 2.59°has tobe obtained through

extrapolation.Note that presently,the smallestscatteringangle from the sun to the detector at

which the radiancecan be measured accuratelyisabout 2°.IsTherefore,itispracticalto measure

the sky radianceat ® = 2.59% In the principalplane measurements, the largestzenithangle of the

detectorisset at 85°. Therefore,in the sky radiance measurements, the largestsinglescattering

angle achievableis ® = 8o + 85° = 145°. At any scatteringangle largerthan 145°, the phase

functionhas to be extrapolated.We extrapolatethe phase functionby assuming thatitisthe same

beyond 145° as itisat 145%

Throughout this section, it is assumed that no error is incurred in these measurements. In

addition, it is assumed that these measurements are conducted under ideal conditions, i.e., the

conditions under which the measured radiance is produced are identical to those in the retrieval

algorithm. To be more specific, the two-layer plane-parallel atmosphere model and the horizontal

homogeneity assumption of aerosols and land surfaces, along with the approximation of a Lamber-

tian surface, all of which are used in the retrieval algorithm, are adopted in generating measured

radiance. The same values of the land albedos and aerosol optical thicknesses were used in both

the retrieval algorithm and the sky radiance simulation program.

3.2 The Retrieval Results

Rayleigh scattering can have significant influence on the total radiance, especially when the

scattering angle from the solar beam to the detector is large. To assess possible effects of Rayleigh

scattering on the retrieval results, we applied the retrieval algorithm at wavelengths of 865 nm and

443 urn. The optical thickness for Rayleigh scattering is 0.01554 at 865 nm and 0.2361 at 443 nm

at standard surface pressure. 2s These values have been used throughout this paper.

We plan to use the algorithm described here to understand the properties of aerosols in coastal

areas, therefore, we shall concentrate on aerosol models most likely to represent aerosols near the

coast. For this purpose, we use the Gordon and Wang 12 coastal aerosol model at 80% relative

humidity (RH), C80, in most computations. However, because we also wanted to examine the

performance of the algorithm under more general conditions, we have also carried out tests using

several aerosol models described by Shettle and Fenn. l° These include their urban models at RH =

0%, RH = 99% (U00 and U99), and their tropospheric model at RH = 80% (TS0). These aerosols

10



provide a range of shapes for the volume scattering function and a range of values for the single

scattering albedo. The phase functions and values of the single scattering albedos for these models

at 865 nm and 443 um are provided in Figure 2. In this figure, the phase functions for Rayleigh

scattering are represented by dash-and-dotted lines, and the phase functions of C80, U99, U00

and T80 are represented by solid lines, dotted lines, long-dashed lines and short-dashed lines,

respectively.
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Figure 2: Phase functions and single scattering albedos for the aerosol models used in this study.
(a) is for A=865 nm and (b) is for A=443 nm.

The coastal aerosol model is expected to be representative of aerosols found in coastal areas.

They have a component of relatively large sea salt particles in addition to the aerosol in the

TS0 model. Beside the sharp peak at small scattering angles, the phase functions for C80 also

have a significant backward structure. The tropospheric aerosol model is used for aerosols in the

troposphere, which are the small-particle component of aerosols expected to be found in rural areas

free of pollution. Compared to the C80 aerosol at both wavelengths, the phase functions for T80

are less forwardly peaked. Urban aerosols are normally found in heavily polluted urban areas. They

are composed of both large and small particles. The phase functions for U99 are extremely sharp

at near-zero scattering angles. The phase functions for U00 are milder in forward directions, but

the aerosol is highly absorbing. The single scattering albedo for U00 at 865 um and 443 um are

0.5919 and 0.6432, respectively. In backward directions, the phase functions for both U99 and U00

are much smoother compared to those for C80. Thus, our models span a considerable range of

shapes for P(®) and values of w0.

11



Figure 3 shows the comparison of the true volume scattering functions and the retrieved volume

scattering functions for the C80 aerosol at 865 nm and 443 nm. The true volume scattering functions

are represented by solid lines and the retrieved volume scattering functions are represented by open

circles. The land albedo is set to 1.0 at 865 nm and 0.5 at 443 nm, since most vegetated surfaces

have a smaller albedo in the blue than in the near infrared (NIR). Note that these albedos are

also larger than would be found in nature. 3_,33 We use these larger albedos to make the retrieval

more difficult for the algorithm. The optical thickness of the aerosol is set to 0.2 in both figures for

comparison purposes. (In reality, the optical thickness of the aerosol layer would be larger at 443

nm than at 865 nm). In both figures, the retrieved volume scattering functions are almost perfect

at small angles. They start to deviate from the true volume scattering functions at large angles

due to the inability to get data beyond O -- 145 °.
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Figure 3. Comparison between the true (lines) and retrievaJ (circles) V.(O) for the cao aerosol
model: (a) is for A -- 865 nm and (b) is for A = 443 nm.

We define the error in the aerosol single scattering albedo Aw0 as

- -
,,/oo , (12)

where _c) is the retrieved aerosol single scattering albedo and w_ t) is the true single scattering

albedo, and we define the average error in the volume scattering function AVa/Va as

I N [vo(od](°)-[vo(o,)] (°
AV /Vo = [vo(®,)](o I, (13)
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where N is the number of measurements of Lt in a data set. Note that the definition of AV_/V.

does not include the error in the volume scattering function for scattering angles smaller than 2.59 °

or larger than 145 °. For the inversions shown in Figure 3, Aw0 = -0.004%, AV_/V_ = 1.29% at

865 nm; Aw 0 = -0.004%, AV,/Va = 1.29% at 443 urn.

Figure 4 shows the retrieval errors for C80, TS0, U99, and U00 at 865 nm and 443 nm as a

function of r,. The land albedo is set to 1.0 at 865 nm and 0.5 at 443 nm.
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The overallretrievalresultsare excellent.For most aerosols,retrievalerrorsin the volume

scatteringfunctionsare within 2%, and retrievalerrorsin the singlescatteringalbedo are within

0.1%. It is worthy of mentioning that the retrievalresultsfor U00, the absorbing aerosol,are

extremely good, which suggeststhat the retrievalalgorithm may be used to identifyabsorbing

aerosols.This is in agreement with the conclusionsof King and Herman. 34 The retrievalresults

for U99 are somewhat disappointing.The errorsin the singlescatteringalbedo and the volume

scatteringfunctionare significantlylargerthan for the other aerosolmodels. The explanationof

the disappointingresultisprovided in the lastpart of thissection.

Multiple scattering increases as the aerosol optical thickness increases. The more significantly

multiple scattering contributes to the total radiance, the more diffuse the total radiance becomes.

Generally speaking, the more diffuse the radiance is, the harder it is to retrieve the volume scattering

function. However, this assertion is not manifest in the figures so far shown. The aerosol optical

thickness does not, in the region of interest, have significant negative effect on the retrieval results.

This may be due to the special design of the retrieval algorithm. Recall that iteration terminates

after the average error in the volume scattering function is smaller than a certain value. (The

error in the volume scattering function is approximated by AL/Lae-_'./_ ', Eq. (8)). Therefore, the

accuracy of the retrieved volume scattering function is not the ultimate accuracy that the retrieval

algorithm could achieve, but rather the accuracy specified by the retrieval algorithm. Had the

retrieval algorithm been designed to obtain the maximum accuracy, the accuracy at a lower optical

thickness could have been higher than that at a higher optical thickness. For instance, we did

observe that for a lower optical thickness, a shorter time was taken for the retrieval algorithm to

obtain the aerosol volume scattering function with the same accuracy. Even though the retrieval

algorithm did not show the ultimate accuracy achievable at different aerosol optical thicknesses, it

did show that the retrieval algorithm is successful even when the aerosol optical thickness is fairly

high.

The presence of a thick Rayleigh scattering layer has a significant influence on the total radiance

in directions where the scattering angles from the solar beam to the detector are large. However,

inasmuch as it is shown in the retrieval results, Rayleigh scattering, despite having significant

influence on the sky radiance, does not have much impact on the retrieval accuracy of either the

single scattering albedo or the volume scattering function. Even though the retrieval results for

U99 are much worse at 443 nm than at 865 nm, the poorer performance at 443 nm is believed
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to be caused by the extrapolation error resulting from a much sharper phase function at 443 nm,

rather than from Rayleigh scattering itself. This outcome is surprising but understandable. Since

Rayleigh scattering can be calculated accurately, it does not contribute to the difference between

the measured radiance and the calculated radiance, as long as the measured radiance is error-free.

The conclusion would be totally different if there are slight errors in measurements.

In most of our simulations, relatively large errors are found in the volume scattering function

at small angles. Especially for U99, the errors in the volume scattering function at 0 ° are about

-50% at 865 nm and about -93% at 443 nm, which means that the real volume scattering function

at 0 ° is more than 12 times as big as the retrieved function. The results are not surprising. Close

observation (Figure 2) finds that the phase functions for U99 take an abrupt upward turn at around

2° , and increases dramatically as the scattering angle decreases. Therefore, the extrapolation of

the phase functions at near-zero scattering angles is not likely to yield accurate results. However,

notwithstanding the large errors at near-zero angles made in extrapolation, the retrieval results for

U99 at 865 um are surprisingly good. Errors in the volume scattering function are slightly over 1%

at each optical thickness. The error in the single scattering albedo is -0.5% for r_ = 0.2, slightly

larger than for other models, but as r,, increases, the error becomes smaller. The retrieval results

at 443 nan are significantly poorer. The average errors in the volume scattering function are 8.40%,

6.68% and 4.81% for _'_ = 0.2, 0.5, and 1.0, respectively. They are significantly larger than for other

models. The larger errors in the volume scattering function are due to inaccurate extrapolation at

near-zero angles.

To understand the effect of extrapolation, one has to consider multiple scattering. In this

section, we only consider multiple scattering up to the second order. Higher order scatterings and

the second order surface contribution are neglected. We believe the omission of these terms does

not affect qualitative assertions. In this case, the total radiance Lt may be expressed as

Lt = L_o + L_a + L__o, (14)

where L_.0 is the second order scattering without surface contribution. Suppose the aerosol optical

thickness is low. If Rayleigh scattering is neglected, the downweUing single scattering radiance at

any aerosol optical thickness r may be written as

=F0 Vo( 0 -. (15)
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The upweUing single scattering radiance may be written as

7"a -- 7"

L_o)(_ ') = Fo_Va(_o _ _'),

where v is defined such that at the top of the atmosphere r = 0 and r = r_ at the surface.

(16)

One can obtain the second order scattering by applying the single scattering formula twice and

integrating it over the whole range of aerosol optical thickness and over all solid angles. Neglecting

higher orders of v_, one has

71_ vo(_0-_ _')voC -_ _)_C).L=0(_)= Roy _ f_' af1_'_f (17)

Notice that the integral does not converge. This is due to the fact that the formula used for

single scattering without a surface contribution is an approximate formula where attenuation is

neglected. Indeed, when the solar zenith angle is close to 90 ° , even if the aerosol optical thickness

is low, attenuation is still significant. Had the accurate single scattering formula been used, the

integral would converge. A more accurate formula may be derived for the second order scattering

based on the accurate single scattering formula; however, our interest here is in the qualitative

rather than quantitative aspects of the second order scattering. A more accurate formula would

not differ from the formula as shown in Eq. (17) in this regard, therefore, we continue to use Eq.

(17) and simply ignore the convergence problem.

Suppose the retrieved volume scattering function is exact except at near-zero angles. Approx-

imate the extrapolation errors at near-zero solid angles with a delta function:

v'(_ -_ _') = vo(o)- c_(_- _'), (18)

where Va(O) is the real volume scattering function, C is a positive constant much smaller than one,

and # = cos 0. Note that C is simply the error in the single scattering albedo. It is easy to prove

that if Eq. (18) is used, the radiance is exact for single scattering. The error in the second order

scattering is obtained by combining Eqs. (17) and (18):

AL_(_) = CFor: V,,(_o _ _) (19); 11,
Comparing it with the single scattering formula L,0, Eq. (19) can be expressed as

AL,(_): c_o_ "°(_). (2o)
I,_o._1
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Equation (20) reveals that the error in the radiance in any given direction isproportional to the

error in the single scattering albedo (C) and single scattering radiance. If Rayleigh scattering

is included, one can prove that Eq. (20) is stillvalid except that Rayleigh scattering has to be

included in the singlescattering formula:

CT"a

ALt(_) - 14o "hi (L_'°(_) + L_,0(_)), (21)

where Ljo has been expressed as a combination of Rayleigh scattering and aerosol scattering. Recall

that the relative error in the volume scattering function was approximated by

AVe(®) ALt

L(O) Lae-",/_oa' (22)

where La is the radiance in the absence of Rayleigh scattering. Substituting ALt in Eq. (21) into

Eq. (22), we have

AVe(O) _v_ ,L_,o + L,,0

v (o) - c' t 1, (23)

where/z0 is the cosine of the solar zenith angle. In the absence of Rayleigh scattering, it is obvious

that La,o/La is always smaller than one. Therefore the maximum relative error in the volume

scattering function is roughly hmited to Cra/tzo. This explains why the error in the retrieved

volume scattering function of urban aerosol at 865 nm is not influenced by the extrapolation error

at near-zero angles. However, if the optical thickness of Rayleigh scattering is relatively large,

Lro0 can be much larger than La at larger scattering angles. In this case, while the small-angle

scattering is not influenced by Rayleigh scattering since aerosol scattering is much more significant

than Rayleigh scattering, errors at large scattering angles are magnified by Rayleigh scattering.

Examining Eq. (23) closely, we find that on the right-hand side of Eq. (23) the dominant term

in the numerator is L.s0 at large scattering angles. It is independent of vs. On the other hand, as

v_ increases beyond the single scattering limit and double scattering needs to be considered, L_ is

approximately proportional to r_ according to Eq. (17). It is not difficult to derive from Eq. (23)

that, to the extent that L,.,o is much larger than L_0,

 vo(o) 1
V_(®--_ c( _'a+ br,, (24)

where a and b are constants. This explains the result that when the aerosol optical thickness

increases, the overall error in the volume scattering function becomes smaller.
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4. The Effects of Approximations and Measurement Errors

In the previous section, we evaluated the performance of the retrieval algorithm based on the

assumption that measurements are taken under ideal conditions and are error-free. However, in

reality, the measurements will contain errors and the conditions assumed in the retrieval algorithm

to calculate the sky radiance, e.g., the surface will usually not be Lambertian. The effects of

measurement error and approximations may be quite significant. Therefore, an understanding of

these effects is necessary.

4.1 Effect of a Non-Lambertian Surface

In the retrieval algorithm, we assumed the land surface to be lambertian, i.e., the surface

reflectance is independent of the directions of the incident light and reflected light. In reality, the

reflectance varies not only with the direction of the reflected light, but also with the direction

of the incident light. Sometimes, it may not even be symmetric about the principal plane, 3s the

plane determined by the incident light and the direction normal to the surface. Accordingly, the

Lambertian surface approximation used in the retrieval algorithm might cause significant error

when applied to non-Lambertian surfaces.

The surface reflectance can be represented by the bidirectional reflectance distribution function

(BRDF), R(40 -_ 4), where 40 and 4 are the directions of the incident light and reflected light,

respectively. The definition of R is as follows. If a beam of parallel light, with irradiance E0(40)

on a surface normal to the beam, is incident on a flat surface in a direction 40, and the radiance of

the reflected beam in the viewing direction 4 is Lref(4), then the BRDF of the surface is

R(40 4)=  L,ef(4)
Z0(40)140" _1' (25)

where fi is the surface normal. For a Lambertian surface, the surface reflectance function is reduced

to a simple form:

R(40 -_ _) = W,o,d, (26)

where wlo,_a is the surface albedo. The BRDF for geophysical surfaces is difficult to measure, as

both _0 and _ must be varied. Most observations of the directional reflection properties of such

surfaces involve measurement of the reflectance factor RL(4, _o) defined by

7rL_efRL(4,4.)--
ETo,oM.)'
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where ETot=z(L) isthe totalirradiance(sun plussky) fallingon the surface(_, isthe direction

of propagation of the solarbeam). As both L_e/ and ETota_(_,)containthe influenceof the sky

irradiance,itisclearthat R(f0 _ _) cannot be derivedfrom RL(_,fo) unlessthe sky contribution

to ETot,._ismuch lessthan the sun'scontribution.This isa good approximation in the red and near

infraredportionof the spectrum ifthe measurements aremade on relativelycleardays (low aerosol

concentration). We assume here that RL(_,_,) = R(_0 --* _). Kimes has measured RL(_,_,) for

several geophysical surfaces, as For this work, we examined the stepped grass and an irrigated wheat

surfaces. Kimes' measurements were performed in two wavelength bands, the 580 - 680 nm band

and the 710 - 1100 nm band, at 3 different solar zenith angles, 27 °, 35 ° and 63 ° for the stepped

grass surface, and 28 °, 42 ° and 59 ° for the irrigated wheat surface. At each solar zenith angle,

measurements were taken at 6 viewing (reflected) zenith angles from 0 ° to 75 ° at intervals of 15 °,

and for each zenith angle, 5 viewing azimuth angles from 0 ° to 180 ° at intervals of 45 °.

These measurements confirm that the BRDF depends not only on the viewing direction but

also on the solar direction. Furthermore, if we calculate the albedo by integrating the extrapolated

and interpolated BRDF:

= d)ld.  ld (d) (27),

where h is an unit vector normal to the surface pointing upward, the resulting albedos are different

at different sun angles. For the stepped grass surface at the solar zenith angles of 27 ° , 35 ° and

63 °, the albedos are 0.2334, 0.2254 and 0.1948, respectively, in the 580 - 680 um band, and 0.3113,

0.3253 and 0.2917 in the 730 - 1100 nm band. The albedos for the irrigated wheat surface at the

solar zenith angles of 28 °, 42 ° and 59 ° are, respectively, 0.0467, 0.0522, 0.0819 in the 580- 680 um

band, and 0.4107, 0.4785, and 0.5857 in the 730 - 1100 am band.

To test the performance of the retrieval algorithm, we applied it to both the stepped grass

surface and the irrigated wheat surface. In order to calculate the sky radiance, we have to know the

value of the BRDF for all incident and reflected directions. Assuming RL = R, at the solar zenith

angles at which the measurements were taken, the BRDF for any viewing directions other than those

measured can be either interpolated or extrapolated. However, interpolation and extrapolation of

the BRDF with respect to the solar zenith angle is not likely to produce any meaningful results

as we only have three solar zenith angles available. Therefore, we assumed that the BRDF is

independent of the zenith angle of the incident direction, even though the data clearly indicate
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otherwise.Thus, we assume that RL(i,i,) = R(_0 _ _) isindependent of the zenith(but not the

azimuth) angleof _o-

Figures 5a and 5b display the BRDF's, R(_0 ---+_), for the stepped grass surface in the 580-680

nm band and 730 - 1100 nm band, respectively, for a solar zenith angle of 63 °. Figures 5c and 5d

display the BRDF's for the irrigated wheat surface for a solar zenith angle of 59 ° in the 580 - 680

nm band and the 730 - 1100 nm band, respectively. The 8 axis is the viewing zenith angle and the

_baxis is the viewing azimuth angle. The vertical axis is the BRDF. The viewing angles are defined

such that when the reflected light travels in the direction opposite to the solar beam, the viewing

zenith angle is the same as the solar zenith angle and the viewing azimuth angle is 180 ° . (The solar

azimuth angle, ¢, is 0 by definition.) Although measured for a specific solar zenith angle, these

BRDF surfaces are taken to represent the BRDF for any zenith angle of an incident photon. In

this case, ¢ in the figures is the difference in azimuth between the incident and reflected directions.

These graphs share the feature that the BRDF increases as the viewing zenith angle and

azimuth angle increase. In other words, the BRDF's are larger in directions close to the direction

opposite to the solar beam. This is true for most natural surfaces. 3T However, the BRDF's for the

stepped grass surface show much less total variation than for the irrigated wheat surface.
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Figure 5: BRDF for two surfaces. (a) and (b) are for the stepped grass surface in Bands 580-680 nm

and 730-1100 nm, respectively, at 0o = 63 °. (c) and (d) are for the irrigated wheat surface in Bands
580-680 nm and 730-1100 nm, respectively, at 0o --- 59 °.

In the calculation of the sky radiance pseudo data, the presence of a non-Lambertian BRDF

replaces the Lambertian surface. The solar zenith angle is set to 60 ° as usual. We choose the

BRDF's measured at 63 ° and 59 ° to be the BRDF's for the stepped grass surface (Figures 5a and

5b) and the irrigated wheat surface (Figures 5c and 5d), respectively. The sky radiance is calculated

at two wavelengths, 443 nm and 865 nm. Since we do not have information on the BRDF's at these

wavelengths, the BRDF's in the 580 - 680 nm band and the 710 - 1100 nm band were used at 443

nm and 865 nm, respectively. The retrieval algorithm assumes a Lambertian surface and used the

true values of the surface albedo which were obtained by integrating the BRDF. Figure 6 shows

the retrieval results using the C80 aerosol model.
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Figure 6 Retrieval errors for non-Lambertian surfaces: (a) and (b) are for the stepped grass surface
at 865 nm and 443 nm, respectively; (c) and (d) are for the irrigated wheat surface at 865 nm and
443 nm, respectively.

The results for the stepped grass surface are fairly good. At 865 nm, the largest error in the

single scattering albedo is less than 0.4°/0, and the largest average error in the volume scattering

function is less than 5%. The results for the irrigated wheat surface are significantly poorer at 865

nm. The largest error in the single scattering albedo is more than 2% and the largest average error

in the volume scattering function is more than 12.0%.

4.2 Effect of Horizontally Inhomogeneity in the Surface Albedo

In addition to the fact that land is usually not Lambertian, it is usually covered with different

surfaces having different albedos. In urban areas, the land is covered with highways, roads, build-

ings, houses, lawns, trees, etc. Even in rural areas, where the landscape is much simpler, the land

is usually covered by a mixture of crops, grasses, and bare soils. In these cases, the land is not

horizontally homogeneous.

The following table lists the measured albedos of different types of surfaces obtained from the

Kimes measurements.aS,3e, ss The albedos vary with the solar zenith angle, but to simplify the table,

we list only the albedos for solar zenith angles near 60 °.
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Table 1. Albedos ofdifferenttypes of land surfaces

Surface Type

Soil

(580nm-680nm) (730nm-1100nm)

0.1885 0.2246

Grass Land 0.3225 0.4307

Lawn Grass 0.0841 0.5056

Orchard Grass 0.0847 0.3424

Stepped Grass 0.1948 0.2917

Soybeans 0.0544 0.5743

Corn 0.0693 0.3224

Irrigated Wheat 0.0819 0.5857

Hard Wheat 0.2310 0.4334

Pine Forest 0.0655 0.2923

Hard Wood Forest 0.0467 0.3694

To simulatethe inhomogeneity inland surfaces,we createda verysimplemodel -- the checker

board model. In the checkerboard model, as the name suggests,the land isequallydivided into

squarepatches. Two typesofsurfacesarerandomly assignedtoeach patch. To createthe maximum

contrast,we used the approximate albedosof the hard wood forestand the grassland surfaceat

443 nm (wz_,_d =0.05 and 0.35, respectively), and soil and irrigated wheat at 865 nm (wz,,,_= 0.20

and 0.60, respectively). In this case, the pseudo data were created using a Monte Carlo code. In

the retrieval algorithm we used the average albedo as the albedo of the homogeneous Lambertian

surface. That is, wl,,,_d = 0.20 at 443 nm and wza,_d = 0.40 at 865 rim. The Lambertian surface

approximation was used in the sky radiance pseudo data calculation as well as in the retrieval

algorithm.

To assess the effect of the size of each individual patch on the retrieval, we vary the size from

0.1 x 0.1 km 2 to 1.0 x 1.0 km _. For each size, we generate 10 independent random patterns. Figure

7 demonstrates the standard deviation of retrieved w_i), Sw0, and the average value of ]AV,,/V,,[(i),

AVa/Va, for each size. The _ axis is the length (kin) of each individual square patch, lAVa�V,2[ and

Sw0 are represented by squares and triangles, respectively at both wavelengths. In our calculation,

we assume that aerosol and Rayleigh scattering are vertically homogeneous. The upper boundary

of the aerosol and the lower boundary of Rayleigh scattering is 1 km above the ground. The upper

boundary of Rayleigh scattering is 20 km above the ground, ra = 0.20 in all of these cases. These

resultsindicatethat the sizeof the individualpatch iscrucial.The largereach individualpatch

is,the largerthe fluctuationsare in the retrievedvolume scatteringfunctionand singlescattering
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albedo. When the land is divided into 0.1 x 0.1 km 2 patches, there is little effect resulting from the

randomness of the land surface albedo. As the size of the patch increases, so does the fluctuation

in the volume scattering function and the single scattering albedo. Comparing the results at 443

nm with those at 865 nm, we found that Rayleigh scattering at 443 um does not have significant

influence on retrieval.

4!

0.1 0.5 1.0
I

Figure 7: IAV_/Val and 6wo for the
checker board model.

These results can be understood through the following analysis. In the single scattering ap-

proach the surface contribution is represented by the following integral:

-- a aydz. (28)

In Figure 8, zl is the altitude of the upper boundary of the aerosol layer, z0 (z0 = 0) is the altitude

of the lower boundary of the aerosol layer, and z is any altitude in between, c_ is the extinction

coefficient of the aerosol, dzdy is an infinitesimal area of the land surface, and wz_,_d, which is a

function of z and y, is the surface albedo. _0 is the direction in which the solar beam propagates,

is the viewing direction, r(_, z; z, y) is the distance from the infinitesimal area to any position

along the viewing direction _, and _ is the unit vector along r.

The contribution to the radiance from a unit area is proportional to I__. 6l/r'. Therefore, the

closer the area is to the detector, the larger the influence it has on the radiance. Calculations show

that more than 75% of the surface contribution from aerosol scattering is attributable to an area

within 3 km radius of the detector. When the length of each patch is 1.0 kin, the fluctuation in the

surface term is extremely large.
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Figure 8 Illustration of the surface integrM in Eq. (28).

dx

Z--Z 1

Equation (28) can be easily modified to include Rayleigh scattering. All that is needed is

to add a similar integral which contains Rayleigh scattering. Since Rayleigh scattering molecules

are distributed from 1 to 20 km above the ground, a wide area of surface contributes significantly

to total sky radiance. The wide area contains a large number of patches of land. Consequently

the fluctuation in the surface contribution from Rayleigh scattering is small. This explains why

the retrieval results did not seem to be influenced very much by Rayleigh scattering, i.e., were

independent of wavelength.

4.3 Effect of Aerosol Horizontal Inhomogeneity

In the previous calculations, we assumed homogeneous aerosol density. In reality, the aerosol

density varies both horizontally and vertically. In assessing the effect of aerosol horizontal inho-

mogeneity, we take an extreme approach. In the downweUing radiance calculation, we assume that

all aerosols are confined in a square box. A detector is situated at the center of the bottom of the
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box. Aerosols axe uniform within the box, but no aerosol existsoutside of the box. In the retrieval

program, the aerosol density is assumed to be homogeneous over the entire horizontal range. The

value of the optical thickness within the box in the radiance calculation program is used in the

retrieval algorithm. The C80 aerosol isused to generate the sky radiance in a Monte Carlo code.

A Lambertian surface with the surface albedo being 1.00 at 865 nm and 0.5 at 443 nm was used

in both the sky radiance calculation and the retrievalalgorithm. The height of the box (hbo=) is 1

km. The length of the square box (Ibo=)varies from 10 km to 100 km. Figure 9 shows the retrieval

resultsof the inhomogeneous aerosol at 865 nm and 443 nm, with box lengths of 10 km, 20 kin, 50

km and 100kin.
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At 865 nm, when the length of the box is 10 km, errors are relatively large compared with

the results when the aerosol is homogeneous, yet they are still acceptable. They become smaller

as the length of homogeneity increases. When the length of homogeneity is 50 kin, there is no

significant error in either the single scattering albedo or the volume scattering function resulting

from aerosol inhomogeneity. By comparison, the results at 443 um are much poorer. For instance,

when the length of homogeneity is 10 kin, errors in the single scattering albedo at aerosol optical

thicknesses of 0.2, 0.5 and 1.0 are, respectively -1.96%, -1.48%, and -1.01%, and average errors

in the volume scattering function are 10.1%, 8.36%, and 10.2%, respectively. Even when the length

of homogeneity increases to 100 kin, error is still observed. For instance, when the aerosol optical

thickness is 0.2, the error in the retrieved single scattering albedo is -0.804%. Errors caused

by aerosol inhomogeneity seem to be magnified by Rayleigh scattering at 443 nm. This may be

understood through the following analysis.

In order for a photon to contribute to the radiance, it has to enter the cone determined by the

lens and the area of the detector. If there is no Rayleigh scattering, photons have to be scattered

toward the detector within the segment of the cone that is inside the aerosol layer. Since the aerosol

is distributed within 1 km above the ground, most photons entering the cone are those scattered

near the detector. As a result, the radiance is determined mostly by the part of aerosols that are

near the detector. Aerosols far away from the detector have virtually no effect on the sky radiance.

In the presence of a thick Rayleigh layer at 443 urn, the segment of cone within which photons

have to enter in order to contribute to the sky radiance includes not only the segment within the

aerosol layer but also the segment within the Rayleigh layer. Since Rayleigh scattering molecules

are distributed from the ground up to 20 km above the ground, photons far away from the detector

now have much better chances of entering the cone and subsequently being scattered into the

detector. Consequently, the sky radiance is determined not only by aerosols near the detector but

also by aerosols far away. In this case, a larger range of aerosol homogeneity is required.

In conclusion, at 865 nm, the retrievalalgorithm does not place a strictrequirement on aerosol

horizontal homogeneity. When the range of horizontal homogeneity is 50 kin, in other words,

when the aerosol ishomogeneous within 25 km of the detector, itis safe to treat the aerosol as a

horizontally homogeneous aerosol. On the other hand, the prevalence of Rayleigh scattering at 443

nm places a much stricterrequirement on the aerosol homogeneity. One should carefully consider

the effectof aerosol inhomogeneity when applying the retrievalalgorithm at 443 nm.
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4.4 Effects of Errors in the Sky Radiance

We examine two types of errors in the sky radiance measurements, random errors and sys-

tematic errors. Random errors are clue to random noise in the instrument. The random noise is

usually considered to have a gaussian distribution usually having a standard deviation of 1% of

the mean. Systematic errors are due to the uncertainty in the conversion of electronic signals to

radiance resulting in calibration uncertainty. They are usually less than 5%.

Simulating systematic errors is straightforward. We can simply add a fixed percentage to the

true radiance in all viewing directions, i.e.,

= (29)

where L ('n) is the measured radiance, L (t) is the true radiance and Po is the systematic error.

Simulating random errors is somewhat more complicated. One needs to create random errors

according to the gaussian distribution, and then add them to the sky radiance in different directions.

= + (30)

where

1 _p_/2a2 (31)
P(p,)- _e

Pi isthe noiseand P(Pi) isthe normalizeddistributionofPi and a2 isthe varianceofthe noise.In

the radiance calculation,we assumed a Lambertian surface,the albedo of which is1.0 at 865 nm

and 0.5 at 443 urn.

4.4.1 Systematic errors

Figure 10 shows the retrieval results at 865 nm and 443 um for the C80 aerosol when there are

+5% systematic errors in the sky radiance, but no random errors. We observed that, in all of the

curves, errors in the aerosol volume scattering function increase as the scattering angle increases.

The retrieval results at 865 nm are acceptable. The largest error in the single scattering albedo

is less than 4% and the largest average error in the volume scattering function is less than 7%.

In comparison, the retrieval results at 443 um are much worse. At ra = 0.2, the error in the

single scattering albedo is 4.66% and the average error in the volume scattering function is 12.4%.
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Rayleigh scattering is believed to be largely responsible for the foregoing result. In the single
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Figure 10: Retrieval errors when there is a +5% systematic error in the sky radiance. (a) is for
A = 865 nm and (b) is for A = 443 nm.

scattering approach, the sky radiance is given by

L(e>(_) = V_(_o _ _)+ _ _(_o _ _), (32)

where "r_ and r_ are the Rayleigh optical thickness and aerosol optical thickness respectively, V_ is

the aerosol volume scattering function and V_ is the Rayleigh volume scattering function. Rear-

ranging Eq. (32), one can obtain the aerosol volume scattering function:

vo(+o-4 _)= L(*)(_)I+"al- ++V.(do-, _)
7"a (33)

It is easy to prove that if the systematic error in L (t) is P0, the error in the aerosol volume scattering

function, AV,./V,_, is

avo(do -_ d) _ovo(_o-_ _) + _v_(do -_ _)
vo(_o-_ d) = po _ov.(_o-+_) (34)

It is evident in Eq. (34) that the error in the volume scattering function increases as 7",

increases. Also, the error is larger in the viewing directions where the aerosol volume scattering

function is smaller. In other words, errors at large scattering angles are much larger than those

at small scattering angles, since the aerosol volume scattering function is forwardly peaked and is

usually very small at large scattering angles.

4.4.2 Random errors
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Figure 11 shows the retrievalresultsat 865 nm and 443 nm, respectively,when there are 1%

random errorsin the sky radiance,i.e.,the noiseisgaussian with a standard deviationof 1%. No

systematicerrorwas assumed. The errorinthe volume scatteringfunctionincreasesas the aerosol
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Figure 11: Retrieval errors when there is a 1% random error in the sky radiance. (a) is for A = 865
nm and (b) is for A = 443 nm.

optical thickness increases. Errors become extremely large at large scattering angles at 865 um and

even larger at 443 nm. However, errors in the single scattering albedo are not significant. The

largest error in the single scattering albedo is only -0.21%. This is easily understandable. The

single scattering albedo is simply the integral of the volume scattering function over all solid angles.

Since errors in the volume scattering function at different angles have different signs due to the

random nature of noise, they offset each other in the integral.

The large errors in the volume scattering functions result from the combined effects of multiple

scattering and the surface contribution. Recall that, in the absence of Rayleigh scattering, if we

only consider multiple scattering up to the second order and the surface contribution up to the first

order, the sky radiance may be expressed as follows:

where

++(,+)= L,0(_)+ Lo,(_)+ L_0(_),

L.o(_)= Fo_Vo(_ --,_),

_ ,.,.,,,,,,..+I,+o._I ( vo(__ _')d_(_'),L,,(_): -o_o -;
I_' _+1 J_,._>o

(35)

(36)

(37)
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and

= Roy dD(_'). (38)

In these expressions, L,0 is single scattering radiance in the absence of a surface, L,, is the surface

contribution to single scattering radiance, L20 is double scattering contribution to radiance in the

absence of a surface, 00 is the solar zenith angle, and (9 is the scattering angle from the sun to the

detector.

Suppose the random error in the volume scattering function at a given scattering angle (9i is

6i as a result of the noise in the radiance. The error in the single scattering radiance is

ALoo(_,) = 6iL,0(_,). (39)

Double scattering L20 and the surface contribution Ls, involve integrals of the volume scat-

tering function. The errors in the volume scattering function offset each other in the integrals.

Consequently, little error is incurred in the surface term and the multiple scattering term. The

total error in the radiance is simply the error in Ls0.

A Lt(_i) = _iL_o. (40)

If we divide both sides of Eq. (40) by Lt and rearrange it, we have

6,- Lt(_,) ALt(_i) (41)
× '

where ALt(_i)/Lt(_i) is the random error in the radiance, simply what we called Pi. Equation (41)

shows the error in the radiance is magnified by the ratio of total radiance to the single scattering

radiance. The more insignificant single scattering is, or in other words, the more significant multiple

scattering and the surface contribution are in the total radiance, the larger the error in the volume

scattering function becomes. At large scattering angles from the sun to the detector, multiple

scattering and the surface contribution constitute the major part of the radiance. Consequently,

errors in the volume scattering function are very large.

Equation (41) was derived in the absence of Rayleigh scattering. However, it is not difficult to

derive that it is still valid if Rayleigh scattering is included, except Lm0 has to be replaced by Lomo,

which is the single scattering radiance from aerosol scattering in the absence of a surface. In this
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case,multiplescatteringand the surfacecontributionbecome even more significant.Consequently,

errorsin the volume scatteringfunctionbecome even larger.

The preceding retrievalresultsand analysisshow that the effectof random errorscan be

serious.However, in reality,one can successfullyreduce them by averagingthe measurement data

over a period of time or the retrievedvolume scatteringfunctionover a range of angles,therefore,

they don't presenta realthreatto retrieval.

4.5 Effect of errors in land albedo

For a land surface with a BRDF that varies over a large range, it is very difficult to measure

the surface albedo with high accuracy. Even for a land surface that is very close to Lambertian,

significant errors may still be incurred in actual measurements of the surface albedo. Figure 5 shows

the retrieval results at 865 nm and 443 nm for the C80 aerosol when incorrect surface albedos are

used. The true land albedos are 1.0 at 865 nm and 0.5 at 443 ILm. The albedos of 0.9 at 865 nm and

0.45 at 443 um were used in the retrieval. A Lambertian surface was assumed in all simulations.
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Figure 12: Retrieval errors when there is a -10% error in the land albedo. (a) is for A = 865 nm
and (b) is for A = 443 nm.

The retrieval results at 865 nm are acceptable. The largest errors in the single scattering

albedo (1.60%) and volume scattering function (6.86%) both occur at the optical thickness of 0.2.

They decrease as the aerosol optical thickness increases. The results at 443 nm demonstrate the

same trend. However, they are significantly poorer than the results at 865 urn. The largest error
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in the aerosolvolume scatteringfunctionand the singlescatteringalbedo are 14.5% and 2.49%

respectively,which occur at ra = 0.2.

These results can be explained as follows. Rayleigh scattering dominates back scattering. A

thick Rayleigh layer at 443 nm increases back scattering thereby increasing the surface contribution

to sky radiance. These errors induced by the biased land albedo are much larger at 443 nm than

those at 865 nm. Since all of the errors resulting from the biased land albedos are allocated to aerosol

volume scattering function, errors in the aerosol volume scattering function and consequently the

error in the single scattering albedo are much larger at 443 nm than those at 865 nm. At the same

wavelength, as the aerosol optical thickness increases, the error in the surface contribution does

not increase significantly, since the major part of the surface contribution comes from Rayleigh

scattering. The implication thereof is that the errors become less significant in relation to the

radiance caused by aerosol scattering. Consequently, the error in the aerosol volume scattering

function and the single scattering albedo decrease as the aerosol optical thickness increases.
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5 Conclusion

This paper illustrated a scheme which applies recursive procedures to retrieve columnar prop-

erties of aerosols, i.e., the scattering phase function and single scattering albedo, from the sky

radiance.

When measurements are performed under ideal conditions, i.e., actual conditions are in total

agreement with the approximations made in the retrieval algorithm, the overall retrieval results

are excellent. The error in the single scattering albedo is usually within a fraction of 1%. The

average error in the volume scattering function is usually well within 3%. However, we did find

that, because of the inability to measure the sky radiance in directions close to the direct solar

beam, relatively large errors in the retrieved aerosol volume scattering function (8.4% at ra = 0.2)

occurred at 443 nm when the true aerosol phase function was extremely sharp (U99).

Subsequent studies concentrated on the susceptibility of the retrieval algorithm to measure-

ment errors and conditions deviating from the approximations made in the retrieval algorithm.

These conditions include non-Lambertian reflectance of a land surface (the BRDF effect), surface

inhomogeneity, as well as horizontal aerosol in_homogeneity. These studies reveal that the retrieval

algorithm places certain restrictions on the land BRDF. When the land deviates significantly from

the Lambertian approximation, e.g., the irrigated wheat surface, significant errors are found in the

single scattering albedo (2.47% at 865 nm at va = 0.2) and, particularly, in the volume scattering

function (AV/Va = 12% at 865 nm for v'a = 1.0)

These studies also reveal that a certain degree of horizontal aerosol homogeneity is required

at 865 nm to ensure accurate retrieval. At 443 nm, a much higher degree is required as Rayleigh

scattering is more significant. The effects of measurement errors in the aerosol optical thickness,

surface albedo, as well as in the sky radiance on the retrieval results have been discussed in this

paper. Aside from the error in surface albedo, the most serious effect is from the systematic

error in sky radiance. Serious error would result from this when the aerosol optical thickness is

low and simultaneously the Rayleigh optical thickness is high. Generally, one has to avoid such

circumstances unless measurements of higher accuracy are available.

In summary, the retrieval error in the single scattering albedo is usually small. Even when

actual conditions deviate significantly from the approximations made in the retrieval program, the
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errorin the singlescatteringalbedo isusually_ I%. This suggeststhat the retrievalalgorithm,

without any furtheradjustment,can be successfullyapplied quantitativelyto identifyabsorbing

aerosols.The retrievalresultsfor the phase functionare not quiteas good. Generally,errorsare

usually quite small at small scatteringangles,but they may get quitelargefor large scattering

angles.However, in most of our calculations,the averageerrorsin the volume scatteringfunction

axe lessthan 5.0% at 865 nm and lessthan 10.0% at 443 nm.

Overall, the retrieval results at 443 nm, with the exception of the BRDF effect, are much

less satisfactory than those at 865 nm. At 443 nm, the retrieval results are more susceptible to

land inhomogeneity, vertical and horizontal aerosol irahomogeneity, systematic error in the sky

radiance, etc., especially for low aerosol optical thickness. Simulations show that when there is

large systematic (calibration) error in the sky radiance measurements, or when the land is strongly

inhomogeneous on large (_ 1 km) scales, the error in the single scattering albedo can be as large

as 10% or even higher at very low aerosol optical thickness (< 0.05). Error in the aerosol volume

scattering function may be as large as 40%.
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Abstract

To recover the ocean water-leaving radiance and derive biophysical parameters from observa-

tions of space-borne ocean color sensors, the required uncertainty in the measured top-of-atmosphere

radiance is at present impossible to achieve prior to launch. A methodology and strategy for achiev-

ing the required uncertainty in the post-launch era is presented here. The method consists of com-

bining direct measurements of the water-leaving radiance, whitecap radiance, and aerosol optical

thickness made simultaneously with satellite overpasses, with radiative transfer theory to reduce

the calibration uncertainty of the visible bands with respect to the near-in_ared (NIR). This pro-

cedure is possible over the open ocean where, in the absence of aerosol transported from land over

long distances by the wind, the atmosphere can be very clear with most of the aerosol generated by

local processes such as breaking waves, e.g., the aerosol optical thickness in the visible ,,, 0.05-0.10.

In this case, the radiative transfer process is considerably simplified and molecular scattering is

the dominant atmospheric component in the visible. It is shown that such a procedure alone is

sufficient to reduce the calibration uncertainty to required levels. Further reduction is possible by

reducing the uncertainty in the NIR calibration by measuring sky radiance from island locations (or

a ship), and using these to predict the at-sensor radiance. For the most part, this NIR calibration

is limited by the uncertainty in the calibration of the radiometer used to measure the sky radiance.

Finally, the sensor calibration is maintained by monitoring the actual water-leaving radiance con-

tinuously at a single location, where the atmosphere is sufficiently clear that atmospheric correction

introduces only a small error, and directly comparing the true and the sensor-derived water-leaving

radiances.



1. Introduction

SeverM ocean colorsensorsare expected to be launched withinthe next few years,e.g.,SeaW-

iFS [Hooker et al.,1992] and MODIS ISalomonson et al.,1989],for the purpose of understanding

oceanicprimary production on a _lobalscale.As the information-containingradiancebackscatter-

ered out of the water and transmittedto the top of the atmosphere (TOA) isonly a small portion

of the radiance that they measure, these sensorsrequirean accuracy in radiometry that cannot

be achievedpre-launch.There are severalissuesconcerningradiometriccalibrationthat must be

addressedfor each ocean colorsensor.For example, when thereare brightcloudsin a scene,how

closeto the cloudswillthe radiometry be vMid, i.e.,not corruptedby the presence of the clouds? If

sensorsemploy array detectors(MODIS), do allofthe individualdetectorsin a given spectralband

in the array record the same radiancewhen viewing a uniform scene? Most issuessuch as these

can be resolvedthrough a systematicexamination of the imagery, or through small radiometric

calibrationadjustments ofone detectorrelativeto another in an array.However, in the lattercase,

even ifalldetectorsprovide the same valuesforthe radiancewhen viewing a uniform scene,what

isthe uncertaintyin that value? In thispaper, we providethe methodology and the measurement

requirements forreducing thislatteruncertaintyto acceptablelevelsin the post-launchera.

The radiance reflectedfrom the ocean itselfconsistsof two components (I) the radiance re-

flectedfrom the sea surface(diffusereflectionfrom whitecaps and directFresnel-reflectionfrom

the interface),and (2) radiance backscatteredout of the water from beneath the surface. The

latterisreferredto as the water-leavingradiance,L_. Itcontainsthe desiredinformation[Gordon

and Morel, 1983]. In what follows,we willreplaceradiance L by reflectancep defined through

p = _rL/Fo cosOo, where 00 is the solar zenith angle, and Fo is the extraterrestriM solar irradiance.

At a given wavelength, A, the water-leaving reflectance is related to the reflectance observed at the

sensor(Pt)through

(1)

where p,(A) isthe contributionfrom pure Rayleigh (molecular)scattering,p,(A) the contribution

from pure aerosolscattering,pro(A) the contributiondue to the interactioneffectbetween air

molecules and aerosols,t(A)p,,c(A)the contributionfrom whitecaps,T(A)p0(A) the contribution

from directsun glitter,and t(A)p,#(A)the desiredwater-leavingreflectancepropagated to the TOA.

T isthe directtransmittance and t isthe diff_e tzsnsmittanceof the atmosphere. In Eq. (1),p,,
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PG,and P,4 are understood toincludethe interactionswith the sea surface,e.g.,p, isthe reflectance

ofa Rayleigh-scatteringatmosphere bounded by a Presnel-reflectingocean that absorbs allphotons

penetratingthrough itsinterface.Typically,in dear water,the contributionof tp_,to Pt is-._10%

in the blue (A .._440 nm), 5% in the green (A ._550 nm) and negligiblein the near infrared(NIR,

A > 750 rim).

In Eq. (I) p, can be preciselycomputed given the surfaceatmospheric pressure [Gordon,

Brown and Evan._, 1988],and P,,ccan be estimated given the wind speed [b'_'ouin, Schwindling

and Deschamps, 1996; Gordon and Wang, 1994a; Moore, Voss and Gordon, 1997]. As Po is very

largenear the specularimage of the sun,itisrequiredthat viewing directionsbe chosen such that

itis negligible.The terms involvingaerosols,Pa + p,_, are highly variable,and in the blue are

comparable in magnitude to tpw [Gordon, 1997]. Thus, the principaldifficultyin retrievingtpw

from pt isassessingthe aerosolcontribution.

Gordon and Wang [1994b] have developed an algorithm for retrieving tp_ from Pt assuming

that p, is computed from an estimate of the surface pressure, P_c has been determined from an

estimate of the wind speed, and p# is negligible. This algorithm has been shown to be capable

of retrieving tpu, at 443 nm with an uncertainty _< + 0.002, when the aerosol over the ocean is

nonabsorbing or only weakly absorbing [Gordon, 1997]. This uncertainty meets the goal of both

SeaWiFS and MODIS: a 5% uncertainty in the water leaving reflectance in the blue in very clear

ocean water [Hooker eta/., 1992]. In the Gordon and Wang algorithm, the aerosol contribution

and its spectral variation are assessed utilizing bands in the NIR, where p_ can be assumed to be

_, 0 due to the strong absorption of liquid water there. Aerosol models are used to extrapolate

the aerosol contribution from the NIX to the visible, and also to account for the effects of multiple

scattering.

2. Effect of calibration errors

Since the desiredwater-leavingreflectanceisonly a small part of pc, accurate calibrationof

the sensor is critical [Gordon, 1987]. For example, if tpw is 10% of Pt, and we want p,,, with an

uncertainty of ±5%, one would expect that it would be necessary to know Pt with an uncertainty of

no more than 4-0.5%. However, as several bands are used in the atmospheric correction of a single
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band,the variationof the calibrationerror from band to band is also important. We now describe

simulations to estimate the magn/tude of the effect of the radiometric calibration error.

To assessthe effectof calibrationerrors,Pt pseudo data were simulatedusing the Shettleand

Fenn [1979]maritime aerosolmodel with 80% relativehumidity (M80). In the absence ofcalibration

errors,the performance ofthe Gordon and Wang algorithmisexcellentfor thisaerosolmodel. An

errorwas then added to each of the pseudo measured reflectances,i.e.,

p (A)= p,(A)[1+ (2)

where a(A) isthe fractionalerrorin pt(A),and p_(A)isthe value ofpt(A)that the incorrectsensor

calibrationwould indicate.The Gordon and Wang correctionalgorithmwas then operated using

the incorrectp_(A) as the measured value,rather than the correctpt(A),and the error in the

retrievedtpw(A),was computed.

The resultingerrorat 443 nm ispresentedin Figuresla-ld,fora sensorviewingnear the edge

of the scan (viewingnadir angle _ 45°)in the perpendicularplane,as a functionof 0o. The y-axis

in these figuresisthe errorin the retrievedtpw, indicatedby Ap(00). Figures la and lb are for

a(765) = a(865) with a(443) = 0 (Figure la) and a(443) = a(765)= a(865) (Figure lb). These

show the effectof a calibrationerrorthat has the same magnitude and signat both 765 and 865

nm. In contrast,Figures lc and ld show the effectof having calibrationerrorsthat have a much

smallermagnitude but oppositesignsat 765 and 865 nm. In thiscaseeven a small calibrationerror

(1%) can have an effectsimilarto a largecalibrationerror(5%) when the signsare allthe same.

As we shallsee later,the reason the errorisso much largerwhen itisof opposite signat 765 and

865 nm isthat itwillcause an errorin the estimated spectralvariationof the aerosolcomponent

that willpropagate through the atmospheric correctionalgorithm.

The goal for the pre-launchcalibrationof the relevantocean colorbands on SeaWiFS and

MODIS isthat Lt have an uncertaintyof <_+10% and 5%, respectively.Figure 1 demonstrates

that such an errorwould cause the errorin the retrievedp_(443) to be far outsidethe acceptable

range (±0.002). A method forovercoming thesecalibrationdifficultiesisprovided below.



3. Radiative transfer in the aerosol single-scattering approximation

Over the open ocean the atmosphere can be very clear with most of the aerosol generated by

local processes such as breaking waves. Such an aerosol is almost nonabsorbing and the aerosol

optical thickness at 550 nm is often in the range 0.05-0.10 [Korotaer et al., 1993; Re&/y et a/.,

1990; Villeralde et al., 1994]. Under such conditions, a simple atmospheric correction algorithm

that employs a multiply-scattered Rayleigh component and a singly-scattered aerosol component

can be used to retrieve Pw [Go,on, 1997]. In this section we review the relevant radiative transfer

for such an approximation.

When the aerosol concentration is small, it is possible to approximate the path reflectance

p. + p. + p.a by p. + p=,, where p. is the multiple-scattering reflectance of a pure P_ayleigh-scattering

atmosphere bounded by a totally-absorbing Fresnel-reflecting interface, and P.m is the aerosol con-

tribution computed to first order in the aerosol optical thickness ra. The aerosol contribution in

this approximation is given by

p=.(.x)= ,,,=(.x)_-=(:_)p.(e,.,_,,;0o,,_; .x)/4cose,,cos0o, (3)

v..(e,,¢,,;Oo,_;,x) = Po(e_,,x)+(,.(o.)+ ,.(Oo))P,(e+,,_),

cosei = + cosOocoseo - sin eosin0,,cos(_,,,- _),

where P.(®, _) is the aerosol scattering phase function for a scattering angle O, w. is the aerosol

single scattering albedo, and r(a) is the Fresnel reflectance of the interface for an incident angle a.

The angles 00 and _ are, respectively, the zenith and azimuth angles of a vector from the point

on the sea surface under examination (pixel) to the sun, and likewise, 0v and _v are the zenith

and azimuth angles of a vector from the pixel to the sensor. The zenith angles are measured with

respect to the =ptvard normal.

Thus, in the single-scattered aerosol approximation to the radiative transfer in the atmosphere,

and ignoring whitecaps and sun glitter, we have

p,(_,)= p,(,_)+p=,(,x)+t(,_)p,,,(,x). (4)

Using this equation is it is easy to devise an atmospheric correction algorithm [Wang and Gor4on,

1994]. Consider two spectral bands in the near infrared (NIR) at ,_. and )It, where the subscript =s"

stands for short and "[" for long. These bands are assumed to possess the attribute that p. _. 0,
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becauseof the strongabsorptionby liquid water in the NIR. For MODIS A. = 750 nm and Az = 865

nm, while for SeaWiFS Am- 765 and AI - 865. Then Eq. (4) provides p_ + p.. at both A. and At.

The quantity p.(A) can be computed accurately, so p_.(A.) and pa.(Ai) can be determined from

the va/ues of pt - p. at A. and AI, allowing estimation of the parameter e(A., At):

e(_.,_,,)- P"(:_') ,,_(_.),-o(_.)p_(o.,_; Oo,_;,x.)
po.(_,) - _,,(.xz),',,(_,)p.(o,,,q,,,;Oo,,/,o;.X,)" (s)

If we can find a way to compute the value of e(Ai, At) for the band at A_ <: A. from the measured

value of e(A., At), we can compute p=.(Ai), which, when combined with p¢(Ai) and p.(Ai), provides

p,,,(.x,):

t(_,,)p,o(_)= p,(:_,)- p.(_,,)- e(_,,_l)p=.(_,d. (8)

The key to utilizing this procedure is to be able to estimate e(Ai, At) from the measured e(A., Az).

Using a set of aerosol models developed by Shettle and Fenn [1979], Wang and Gordon [1994]

showed that to a good approximation

e(_,,,_,_)= exp[c(.xz-A,)] (7)

Further examples of the validityof thisapproximation are provided in Gordon [1997].Using this

itiseasy to complete the retrievaloft(Ai)p=(A_):

t(.x,)p,,,(.x,)= ,o,(_,)- p.(_,) - ec')(_,,.x_),,o.(.x,). (8)

In Eq. (8),_(e)(Ai,Az) is the estimated value of e(Ai,At) assuming the exponentialvariationwith

Ai,i.e.,

[(_ fp"(>")] 1t,_)J I

Gordon [1997] shows that excellent results can be obtained with this simple algorithm when the

aerosol is nonabsorbing or weakly absorbing, and the aerosol optical thickness at AI (865 nm) is

< 0.I0. In the case of SeaWiFS, correction for the effect of the Ol "A" absorption band are

necessary at A. [Ding and Gordon, 1995].

We now use thisa_rosolsingle-scatteringapproximation to understand analyticallythe effects

of the calibrationerrorsthat are shown in Figure 1. Assuming the aerosolsingle-scatteringformu-

lationof the radiativetransferprocessisexact,and using Eq. (7),to firstorder in a(A) the error

in the retrievedp=, is [Gordon, 1997]

t(_,),_p,,,(_,)= _(.x,)p,(.x,)- _(.x,,.x,)_(.xdp,(_,)

.x.) L_-'_'_,,_':'(A')'_'(A')F'(A''A') - ,(A,,A,)a(A,)e,(A,)]. (9)
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In Eq. (91, the first term, a(A,)pt(A,), represents the direct e/_'ect of any calibration error at A, on

the retrieved p_(Ai). The remaining terms represent the indirect effect resulting from calibration

error at Am and At. Note that if A, and Al have calibration errors with the same sign, the second

term will subtract from the first, and cancelation in the terms in the square brackets wil/also occur.

In contrast, if a(Aa) and n(A/) have different signs, the error is m_fied as the two terms in the

square brackets in Eq. (9) will add. This explains the behavior of the error in tp_ in Figures lc

and Id.

4. Calibration initialization

In Section 2 examples were provided to show the sensitivity of the algorithm to sensor calibra-

tion errors (Figure 11. It was demonstrated that calibration errors of the order of ±5%, the absolute

radiometric calibration uncertainty specified for the MODIS visible bands, would lead to excessive

error in p=, even if the calibration error in the two NIR bands were of the same sign. When errors

in these bands are small (,,_+1% I but have opposite signs(FiguresIc and Id),the errorin the

water-leavingreflectancebecomes largebecause of the extrapolationof_ intothe visible[Eq.(91].

Thus, itisclearthat the calibrationuncertaintyof SeaWiFS and MODIS must be reduced in order

to provide acceptablep_,,retrievals.

Although the calibrationrequirement is di_cult ifnot impossible to meet using standard

laboratorymethods, we show here that itshould be possibleto perform an adequate calibration

in orbit using surfacemeasurements to deduce the true water-leavingradiance and the optical

propertiesof the aerosol.This isnormally referredto as _caeious calibration[Evans and Gordon,

1994; Praser and Kaufman, 1986; Gordon, 1987; Koepke, 1982; Slater et al., 1987]. We now outline

a methodology for effecting such calibration, the process of which we refer to as initialization. This

calibration is not radiometric, rather, it is a calibration of the entire system -- the sensor plus the

algorithms. As will be seen below, the sensor calibration will be adjusted to force the algorithm to

conform to surface measurements of water-leaving radiance and atmospheric (aerosol) properties.

A similar procedure was carried out for CZCS [Evans and Gordon, 1994], but without surface

based atmospheric measurements. It was only moderately successfttl because the calibration of

that instrument varied in time, and there was no independent way of determining the temporal

variation. Here, we make the assumption that any change in the sensitivity of the instrument with



time be determ.med
by other methods, e.g., using an on-board solar diffuser or imaging the

can

moon.

Upon initial operation of the sensor, one expects that the a(A_) in Eq. (2) will be of the order

of ±5% (MODIS), with a(Ai) being positive for some of the Ai's and negative for others. We

acquire imagery over ships measuring Lto(Ai) for a variety of (dear sky) aerosol concentrations.

Given p,_(A_), and assuming the atmospheric correction algorithm [Eq. (6)] is exact, we operate it

backward, i.e., compute e(A_, At) using p,_(A_) at each wavelength A_. This provides the behavior

of e(Ai, A_) with A_. It is expected to be a smooth, nearly exponential [Gordon, 1997; Wan 9 and

Gordon, 1994], function of A_. If the a(A_)'s differ significantly in magnitude (or in sign), e(A_, )q)

will vary with A_ in a repeatable (from day-to-day) but unrealistic manner, and this will be magnified

when the aerosol optical thickness is small.

To understand this magnification, we assume that the aerosol single-scattering version of the

radiative transfer is exact. In that case,

p,(_) = p.(_) + p..(_) + t(_)p.(A).

and from its definition

e(_,. _,) - P"(_') - P'(_') - P-(_') - t(A,)p..(_,)
p..(_,) p,(_) - p.(_,) - t(_,)p.(A,)"

Inserting p_ from Eq. (2) in place of Pt, we have the apparent value of _(Ai, At):

e'(_,._,) = ,-(A,)m(_,)+ p..(A,)
a()q)p,(A,) + P,,(AI)" (10)

For very small a(A)'s this provides an approximately correct e(A_, At), i.e., p,,(Ai)/p,,,(Az); however,

if the a(A_)'s are not small, very significant errors in the computed e()_, Ai) are possible. This error

will be particularly large for bands for which Pt :_ p,,, e.g., in the blue. To illustrate this, a

numerical example is useful. Consider two error scenarios: (1) the a(A_)'s alternate in sign from

band to band; and (2) the a(A_)'s all have the same sign. In each case we assume for simplicity

that the a(A_) all have the same magnitude, and employ a viewing geometry specified by 00 _ 32 °,

0, _ 33 °, and _b, _ 100 °. We take the "aerosol radiance" La defined as Lt - L, - tL,= at 670

nm to be 0.2, 0.4, and 0.6 mW/cm2pm sr. These values correspond to p,, ._ 0.005, 0.010, and

0.015, or _'_ _ 0.04, 0.08, and 0.12 at 670 nm, respectively. For reference, from CZCS imagery, the

mean L_ for the Arabian Sea in winter (the low aerosol season) is _ 0.6 mW/cm2pm sr, with a



standard deviationof about 0.2 mW/cm3/_m sr(C.R. McClain, GSFC, personal communication).

Thus, L, valuesin thisrange are easilyfound over the oceans. The resultsof computing _'(Ai,Al)

with Eq. (10) as a function of the magnitude and the signof the calibrationerrorare provided

in Figures 2a-2d. In preparing the figuresithas been assumed that the correctvalue of e(A_,Al)

isunity for allAi, i.e.,what would be expected for a maritime aerosolat high relativehumidity

[Shettleand _Penn,1979; Wang and Gordon, 1994]. The figuresclearlyshow that the apparent

value ofe(A_,At)isstronglyinfluencedby the calibrationerror,and that the influenceincreasesas

the aerosolopticalthicknessdecreases.Ifthe true value of _(Ai,At) were known, the calibration

forthe band at Ai could be adjusted to bringthe apparent value intoequalitywith the true value.

That is,replacingE'by the known e in Eq. (10)shows that the residualvalueof a(A_) isrelatedto

a(Al) by

=
"AI)a(AI). (11)

Thus, with thiscalibrationadjustment,theresidualerrorc_(Ai)willbe < a(Az),sincept(A_)< pt(Ai)

because of the strong spectralvariationof p,. We see that thisform of calibrationadjustment

automaticallyreduces the errorin the short-wavebands to a value below a(A_) and assures that

allof the a's have the same signas a(Al).

In practiceEq. (11) is uselessbecause a(Az) is unknown. Thus, given e(Ai,A_) one must

actuallyadjustthe calibrationby trialand erroruntil¢'(Ai,At)agreeswith the correctvalue.This

isequivalentto (1)solvingEq. (8)forpt(Ai),givent(Ai)p,o(Ai)and replacing_(')(Ai,At)by e(Ai,At),

and (2) adjustingthe sensorcalibrationto forcep_(Ai)intoagreement with the computed pt(Ai).

This was done forthe example inFigures2a and 2b, where a(865) = +0.05. The resultingresidual

a's are presentedin Table 1. The residuala's followthe expected pattern,i.e.,Eq. (11),and in

the firstthreebands are reduced to lessthan 1%. As mentioned above,thisreductionisdue to the

increasein Rayleigh scatteringwith decreasedAi. In fact,the Rayleigh opticalthicknessat 412 nm

isapproximately 12 times that at 765 nm, similarto the decreasein a(412) compared to a(765).

Note, however, that thismethod cannot even detectthe errorat At.

The residual errors in Table 1 were added to the Pt pseudo data used to prepare Figure 1,

and the Gordon and Wang correction algorithm was applied. The resulting error in tpw at 443

nm is shown in Figure 3a. The error after this calibration adjustment is significantly reduced. In

fact, it is similar to the error obtained when a _ +0.02 in all bands. Figure 3b shows the further
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improvement that would be possibleifa(At) could be reduced to 0.025,halfof itsassumed initial

value.

Itisclearthat the above method of calibrationadjustment has the potentialforreducing the

efl_ectsof calibrationerrors;however, to effectthe adjustment we need a method of determining

the correctvalue of e(A_,AI).In addition,a method forreducing the errorat the long wave band,

At,would furtherimprove the retrievalof tp_ (Figure3b).

Gordon [1997]studied the propertiesof a wide varietyofaerosolmodels with both log-normal

and power-law sizedistributions.That study suggested that measurement of ra(Ai),for allA_,

would allow a reasonable estimate of _(A_,At). Figure 4 from Gordon [1997]provides examples

showing the existenceof a rough relationshipbetween _',(443)/_',(865)and e(443,865) for several

aerosolmodels. These models includenonabsorbing aerosols(open symbols) as well as weakly-

and stronsly-absorbingaerosols(solidsymbols). Far from terrigenousand anthropogenic aerosol

sources,where the aerosolover the ocean islocallygenerated,one expectsnonabsorbing aerosols.

Figure 4 suggeststhat e(443,865) in such cases can be estimated from _'_(443)/r_(865)with an

uncertainty.._±0.06, when it is near unity,i.e.,for a pure maritime aerosolat high relative

humidity [Gordon and Wang, 1994b].Figures2c and 2d show thatife(443,865)isknown to within

-4-0.1,itshouldbe possibleto reduce Ia(443)[to _ 0.01.

To reduce a(Az) the fullopticalpropertiesofthe aerosolmust be measured. Wang and Gordon

[1993]have shown how to combine measurements of_'Gand sky radianceoverthe oceans to obtain

the aerosolphase function and singlescatteringalbedo. Furthermore, the derived Pa and w, can

be insertedintothe RTE to FeedictPt. Predictingp¢ in the visiblerequiresmeasurement of Pw;

however, in the NIR pro _ 0, so pt(At) can be predicted without pro measurements. Gordon and

Zhang [1996] performed a complete sensitivity analysis of this procedure for predicting Pt and, as

expected, under the most favorable conditions the error in the predicted pt would be approximately

the calibration uncertainty of the radiometer used in the measurement of the sky radiance, i.e., the

accuracy of the procedure is limited by the accuracy of the surface-based radiometer, not the

radiative transfer process. It is now possible to calibrate a radiometer relative to a standard lamp

to within ±2.5% [Biggar, Siater and Geilman, 1994], although it is believed that detector-based

calibration could reduce the uncertainty to ±1% [Slatee et al., 1996]. The Gordon and 27zang [1996]

study suggests that the radiative transfer process would introduce an uncertainty in the prediction

of Pt that is _< ± 1% for error-free sky radiance measurements. Thus, assuming that the sky
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radiance can be measured with an uncertainty of +2.5%, the Cordon and Dang [1996] results

suggest that the error in the predicted pc should be < -i- 2.7% in an RMS sense.

On the basisofthe above discussion,we believethatitshould be possibleto reduce the a(Ai)'s

to _< 0.02- 0.03 in the NIR, and to significantlysmallervaluesin the visible.Also,the residual

a(Ai)'swillallhave the same sign.

Itisimportant to stressagain thatthe calibrationdescribedhere isnotradiometric,but rather

a calibrationofthe entiresystem -- sensorpiu._algorithms.Also,sincewe use F0 to compute pt in

the procedure,the calibrationisalsorelativeto thisquantity.An errorin F0(A_)willinfluencethe

resultingvalue of a(A_);however, itwillchange in a very simple manner. The measured radiance

L_ isrelatedto the truevalueL¢ by LI = Lt(1+ aL). This isconvertedtoreflectanceby multiplying

by _r/F0cos9o. Ifthe extraterrestrialsolarh'radianceused in the conversion(F_) isin errorby a

fractiona_,,i.e.,F_ = Fo(1 + aF), where Fo isthe truevalue,then p_ and pt are relatedby

, (I+ a_.)

Comparing with Eq. (2) we see that the value of a(A_) resultingfrom the procedure is really

aL(Ai) - aF(A_),i.e.,itincludesthe erect of boththe sensorradiometriccalibrationerrorand any

errorin the extraterrestrialthe solarh'radiance.Thus, our approach ispragmatic, no attempt is

made to determineor understand the sourceofthe error.The errorinF0 (correctedforthe variation

in the earth-sundistance)isindependent of time,and as long as the radiometricsensitivityof the

instrument isindependent of time (or itsvariationismonitored by other means), the algorithum

should perform as suggested by the analysisprovided for Figures1 and 3.

Summarizing, by comhlnlng the correctionalgorithm,measurements of pw, and an estimate

of e(A_,At),itispossibleto reduce the F0-sensorcalibrationerrorsignificantlyin the visible,even

with a rather large error (,,_ 5%) at At. This alone could provide a calibration that will yield at-

mospheric correction to nearly the desired accuracy (Figure 3a). Further reduction of the error

requires reducing the uncertainty at At. This can be accomplished by making atmospheric mea-

surements sufficient to characterize the aerosol, and then predicting pt(Az). The final calibration

accuracy at At will be approximately the same as the accuracy of the surface-based radiometer used

to characterize the aerosols.
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5. Out-of-band response

We have implicitly assumed that the sensor's spectral response is a Dirac delta function. In

reality, each spectral band wKl respond to radiance in a range of wavelengths, some even far from

the nominal band width. If _'i(_) d_ provides the electronic output (current or voltage) from the

detector for unit input radiance in a narrow band d_ around _, then the band radiance measured

by the sensor in orbit will be

f L(A)S,(A)d_
(L(_))s,- f S,(A)dA '

i.e., the electronic output will be _ (L(_))s,. In an earlier paper [Gordon, 1995], I provided

methodology for including the out-of-band response in the analysis of ocean color imagery, e.g.,

applying atmospheric correction to (Lt(A))s,. It is straightforward to apply my analysis here, where

the aerosol single scattering formulation of radiative transfer is believed to be v_Lid. ALLthat is

necessary is to convert the radiance to reflectance through

(L(_))s,- coseo(p(_))_oS,,

where

SPCX)Fo(X)S,(X)da(P(X))ros,- SFo(_)S,(X)dX'
rewrite Eq. (4) for the band radiance (P(A))roS,, and then treat each term in a manner identical

to Gordon [1995]. In the case of sensors with spectral bands that overlap a water vapor absorption

band, e.g., SeaWiFS, the total column water vapor concentration is required. This can be obtained

from the surface through sun photometry [Thome eta/., 1993].

6. Effect of multiple scattering and measurement error

In essence, the calibration adjustment used to reduce a(_,) with respect to a(_z) involves

estimating P¢(_i) and then adjusting the sensor calibration so that it provides a value of P_(_i) in

agreement with the estimate. The estimated Pt(_i) is given by

_,(_,)].,, = p.(_,)+ t(_,)p.(_,) + t(_,)p.o(_,)+ _(_,,_,)[p,(_) _ p.(_,)_ t(_,)p.o(_)], (12)

where, if a(_z) = 0, the term in the square brackets is p.(_) -I- p,.(AI), and was called p..(_l)

earlier (in the aerosol single-scattering approximation). This estimated p¢(A_) can be in error for

several reasons: (1) error in the measured t(_)pw(_) and/or t(_)p,._(_,); (2) error in e(,_,, _) by
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virtue of its estimationfrom r4(Ai)/ra(A,); and error in the term in the square brackets [a(A,) _ 0

and/or error in t(A,)pwe(Al)]. However, there is an additional error due to the fact that e(A,, A,) is

a single-scattering quantity, i.e., it is not equal to

eMS(A,,A,) - p°(A,) + p,,,(A,)
p,.(A,)+ p,=(A,)'

which includes multiple scattering, and which must replace _(Ai, Az) in Eq. (12) in order for the

equation to provide the correct value of pt(Ai) in the absence of errors in any of the measured

reflectances or in pt(At). In fact, the difference between e(Ai, At) and eMs(Ai, At) is at the core of

the Gordon and Wang [1994b] atmospheric correction algorithm. Fortunately, given e(Ai, At) and

7"=(A_), computation of eMS()q, At) is not difficult. One need only employ a nonabsorbing aerosol

model (the aerosol expected at any suitable initialization site) that has a shnilar e(A_, At), and

solve the radiative transfer equation to simulate the multiple scattering. As we are close to the

single-scattering reghne, error in the estimate of eMS from e should be small.

With so many possiblesourcesof error(four),itisdifficultto assessthe overallaccuracy to

be expected,as the errorsmay combine inmany differentways. The approach we take here isto

examine each errorseparatelyin the absence of the others.For simplicitywe provide a numerical

example. Consider a situationin which the aerosolat the initializationsiteischaracterizedby the

Shettle and Fenn [1979] Maritime aerosol with 80% relative humidity (M80). Assume 00 = 60 °,

and the sensorviews the ocean in the near-nadirdirection.The oceanicsiteisoligotrophicwith a

pigment concentration(the sum of chlorophyn a and phaeophytin a) -_0.03nag/m s. The whitcap

reflectanceis characteristicof a wind speed of _ 8-9 m/s, and possessesthe spectralvariation

perscribed by b'_min, Schwindling and Deschamp8 [1996]. Under these conditions, the computed

individual TOA reflectances (including multiple scattering) are provided in Table 2 for four spectral

bands. The values provided for Pa + P_= are for _'a(865) = 0.1. Given these values, we examined the

errorin the predictedpt(Ai)induced by a 5:5% error in t(Ai)pw(Ai),a ±50% errorin t(Ai)p_c(Ai),

and a -I-5%(or 5:2.5%) errorin the measured p_(At)(a(A_)_ 0). The resultsof thisexerciseare

provided in Table 3 forpredictionsmade using both e(Ai,At) and eMs(Ai,At) (the correctvalue).

For the fourbands in the chosen geometry with _'a(865)= 0.1,e(A_,At)= 1.124,1.085,1.027,and

eMs(Ai,At) = 1.247,1.201,and 1.054,respectivelyfor Ai = 443, 555, and 765 nm. Note that at

443 nm the differencebetween eMS and e is,,_0.1,i.e.,a littlelargerthan the expected uncertainty

(Figure 4) in e(443,865) derived from ra(443)/r=(865), so the difference in two identical cases using

eMs and e provides an estimate of the error induced by error in e or eMS. From Table 3 we see

14"



that for a very clear atmosphere I_'a(A,) = O] error in Pwc(A) produces very little error pt(A). In

contrast, error in p_(A) produces significant error in Pt at 443 nm (_ 1%); however, notice that

error in p,o(A_) produces a much smaller error in pt(A_). For r6(Al) = 0.1, using the correct _MS,

errorinPw, P_c,and pt(Ai),leadto errorsinpt(A,)thatare similarto thosewith To(A,)= 0. When

the incorrecte isused the errorsare generallylarger,and errorin p_(Al),especiallywhen itistoo

small,can leadto ratherlargeerrorinpt(555);however, the effectsat443 nm are considerablyless.

As in the casewhen measurement errorsare absent,typicallythe resultinga(A_)'sallhave the same

sign (or when one has a differentsignfrom the restithas an insignificantmagnitude). With the

exceptionof the combination ofa -5% errorin pt(A_)and the incorrecteMS, a(555) and a(765) are

similartothoseinTable I. In contrast,a(443)isoftenlarger,usuallywhen thereiserrorinp_(443).

The message from Table 3 isclear:a high priorityshould be placedon reducing errorin p_(443),

and on findingthe value ofeMs(A_, A_).Itisbelievedthat p_(A_)measurements can be carriedout

with an uncertainty< 5%, indeed thisisrequiredto verifythat the accuracy goal for p_(443) is

met. However, itwould be possibleto reduce furtherthe erect of p_ uncertaintyby choosing a

mesotrophic initializationsite,forwhich the valueof p_ in the blue would be considerablyreduced.

As errorin pt(A_)can be important (especiallyin the presence of eMS error),reduction of a(Ai)

relativeto a(A_)shouldbe erected afterreductiona(Az).The entriesin Table 3 fora(865) = ±2.5%

show a concomitant improvement in a(Ai).

As itisdifficultto appreciatethe erectsofthe residualerrorsshown in Table 3,we provide two

examples ofthe qualityofthe atmosphericcorrectionfollowinga hypotheticalinitializationexercise.

We assume thatthe atmosphere isvery clearand use the _'4= 0 residualsfrom Table 3. We ignore

whitecaps errorunder the assumption thatitwillbe ,_ ±50% (itisalready almost insignificant

at ±50%). The uncertaintiesdue to p_(443) and 9¢(865) are assumed to add, i.e.,the worst-case

scenario.Figures 5a and 5b provide the resultingerrorin t(443)p_(443)for a(865) = +5% and

+2.5%, respectively.In both casesthe correctioniswithin the desired±0.002 range. Comparing

thesefigureswith Figures 3a and 3b underscoresthe importance ofreducingthe uncertaintyin the

measurement of pw(A_) ifthe measurements are carriedout in oligotrophicwaters.

7. Implementation Strategy

On the basisof Sections 3-6,we can enumerate the quantitiesthat must be measured to

implement the in-orbitcalibrationadjustment.
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7A. Reduction of a(A_) relative to a(Az)

In order to effectthe reductionof a(A,) relativeto a(Al),i.e.,Eq. (11),we requiret(A,)and

p_,(A_)toprovidetp,,,ro(A_)/7"o(A_)toprovide_(A_,As),surfaceatmosphericpressure(P) toprovide

p,.(A_),and an assessment ofP=c(A_)ifwhitecaps are present.These quantitiesmust be measured

in an oceanic area for which ra(A) in the visibleis _ 0.10. The water-leavingreRectance p=(A)

should be horizontallyuniform (or itsvariabilityassessed)over the scaleof a few pixelsaround

the measurement location. The water-leavingreflectanceis deduced from measurement of p=,

the subsurfaceupweUed reflectancedistribution.With the exceptionof t(Ai),the instrumentation

requiredto effectthese measurements isdescribedin C/ark et al.[1997I.In the clearatmospheres

requiredfor thisexercise,computation of t(A_)iseasilyeIYected[Yang and Gordon, 1997 ].

The desirableattributesof the calibrationinitializationsiteare (1) a very clearatmosphere

(r° _ 0.1in the visible),(2)horizontallyuniform p= overspatialscalesof a few pixels(afew km),

and (3)mesotrophic waters to reduce the effectof p= measurement errorin the blue.It isusually

not possibletofinda sitepossessingallthreeattributes.For example, the centralgyresofthe oceans

usuallypossessattributes(1) and (2),exceptunder situationswhen desertdust istransported to

them by the winds. However, they become mesotrophiconly episodically,e.g.,during springbloom

conditions.Mesotrophic conditionsoften occur closerto land (shelfand slope regions);however,

in these regions_'=(A)isnot likelyto be low. Because assessingthe aerosolcontributionunder

high aerosolloads isdi_cult,we drop attribute(3)in favorof (1) and (2).An apparently suitable

sitethat possess atributes(1) and (2)iswindward (.,_100 kin) of the Hawaiian Islands.This site

islogisticallyattractive(seeSection8) and should meet the requirements;however, the accuracy

requirement on the p= measurement willbe challenging.

7B. Reduction of a(A_)

In order to effecta reduction of a(Al),measurement of the normalized sky radiance Psky,

and aerosolopticalthicknessat At,eitherat sea or f_om a small island,are required to utili,.e

the methods of Gordon and 27_ang[1996].Clark et _. [1997]describeinstrumentationcurrently

availablefor such measurements. These measurements should be made closeto the time of the

satelliteoverpass;however, thereare geometricalconstraints.Using the Gordon and Zhang [1996]

Pt inversion-predictionapproach, the aerosolscatteringphase function can be retrievedonly for
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scatteringangles® forwhich the directsolarbeam can be singlyscatteredintothe sky radiometer.

The rnATirnllrnangleforwhich thisispossible,®M.x, is0o+90 °,and so P.(e, A) can be determined

only for0 __ ® < ®M.x = 0o -F90°. As SM.x correspondsto viewing in the horizontaldirection,

practically,the maximum ® willbe ,_ 5° lessthan ®M.x. Accurate predictionsof the TOA re-

flectancePt are possibleonly forthose directionsforwhich the solarbeam can be singlyscattered

intothe sensorthrough a scatteringangle < ®Max. For nadirviewing,the requiredscatteringangle

is ®N = 180° --00. For viewing at the scan edge (takenhere to be 9v = 45°,¢_v- #b0= 90°),the

requiredscatteringangle ez isgivenby cos®z = -0.707 cos00.Figure6 provides®M.x, ON, and

eE as functionsof 00. Noting that $ must be < ®M.x to effecta vicariouscalibration,Figure 6

shows that thisispossibleonly for 00 _> 35° at the scan edge, and 00 > 45° at the scan center

(nadirviewing).When the practicallimiton SM.x isconsidered($M.x reduced by -,_5°),we find

that 00 _ 47° at the scan center,and 00 >_ 38° near the scan edge.

These geometricalconstraints,coupled with the factthat ocean colorsensorsare typically

in orbitsfor which the satelliteoverpass iswithin 1.5hr of localnoon, generallymeans that for

simultaneous surfaceand satellitemeasurements to be possiblein the northern hemisphere, the

measurements must be carriedout at mid latitudesnear the wintersolstice.Note that,although

the reductionofa(A_) willbe attempted at sea simultaneouslywith the reductionof a(A_),Ai < Al,

it can be carriedout in a separateexperiment at a differentlocationand time ifnecessary,i.e.,

independently of the reductionof a(Ai),A_ < Az.

Although severalsitesare under considerationfor an independent a(Az) reduction exercise,

one that appears to possessthe desirableattributesisthe area surrounding the Dry Tortugas (,_

24°38_N, 82°53_W) in the Southern Gulf of Mexico. Presently,thissiteispart of the AERONET

network [Hoibenetal.,1997]and isequipped with instrumentationformeasuring PSky(A) and _'o(A).

The islandissufficientlysmall that no correctionsforitsperturbationto the sky radiance should

be required [Yang, Gordon and Zhang, 1995].Although the waters in the vicinityof the islandare

shallow (,,_few meters),the strong absorptionof liquidwater at At (-,,5 m -x at 865 nm) should

prevent any bottom contributionto pw(Al),so the assumption that pw(At) = 0 shouldstillbe valid.

(This can be verifiedby directmeasurements.) During the winter,the passage of coldfrontsat -_

5-10 day intervalsproduce exceptionallyclearatmospheres (I-oas low as 0.04 at 670 nm). In this

season,solarzenithangles-,_40°- 50° occur near solarnoon, the approximate time of a SeaWiFS

overpass. Solar zenithangles at the time of a MODIS overpass (,_ 1.5 hours beforelocalnoon)
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can be as large as 56 ° (Figure 7). Noting that in practice we require 80 _> 47 ° at the scan center

and 38 ° at the scan edge, we see that in the case of MODIS, vicarious calibration is possible for

a considerable number of days around the solstice irrespective of the scan angle. In contrast, for

SeaWiFS (equator crossing at local noon) calibration can be efl'ected at the scan center only near

the solstice, but near the scan edge, it could be effected for several weeks on either side of the

solstice. In the year 2000 a second MODIS instrument is planned to be launched with an equator

crossing 1.5 hours after local noon. Figure 7 shows that the above comments regarding SeaWiFS

would apply equally well to this second MODIS.

Our definitionof the scan edge (45° viewing angle)issomewhat arbitrary,In fact,SeaWiFS

willacquiredata for 99 as largeas 58° (althoughthe atmospheric correctionfor 0v _> 45° isnot

expected to be accurate).At 0_ = 58° the miniwllzm 90 is ",_30 °, and thisvicariouscalibration

technique could be extended to about 75 days on eithersideof the solstice.

Finally,itshould be noted that the Gordon and Zhang [1996]techniqueworks best when 0o

islarge,e.g.,60°, in which case one need guess at only a small portion of the scatteringphase

functionat largeangles.One way to achievethisistomeasure the sky radianceat large9o and use

thisdata to retrievethe scatteringphase function,and then predictpt laterin the day when the

satelliteoverpassoccurs. This would allowitsapplicationin situationswhere OMax < ON or eE,

e.g.,during at-seaexercisesforreducing a(A_)relativeto a(Al),should such exercisesoccur during

summer. For SeaWiFS the sky radiance to be invertedwould have to be acquired ,,_1.5- 2 hours

prior to the overpass at the Dry Tortugas site.As the AERONET sky radiometer/photometer

operates in a nearlycontinuous mode, any change in the aerosolopticalpropertiesover the 1.5-2

hour period should be evident in the aerosolopticalthiclmessspectraldata. Gordon and Zh,ang

[1996]provideexamples ofthe expected accuracyinthe predictedpt(Az)under conditionsforwhich

PSky isobtained when 90 = 60°,but Pc ispredictedfor9o = 45° and 50°.

The basic approach to the reduction of a(A_) willbe to continuouslyacquire sky radiance

data throughout the winter months and use only those data acquired under optimum conditions

to predictpc(At).The main challengewillbe the radiometriccalibrationof the sky radiometer.

Presently,these radiometers are calibratedusing an integratingsphere at Goddard Space Flight

Center. This sphere has been part of the SeaWiFS IntercalibrationRound-Robin Experiments

(SIRREX) [Johnson et el., 1996; Mueller, 1993; Mueller et el., 1994; Mueller et el., 1996], and as

such the sky radiometer is calibrated with the same standards and protocols as the rsdiometers
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used to measure Pw in Subsection 7A. However, maint_g the calibration of such unattended

J_ustruments is difficult.

7C. Summary of Requlred Measurements

The surface measurements required for the two vicarious calibration exercises described in

this section are summarized in Table 4. Note tl_at both exercises can be carried out at the same

location if desired; however, it is not necessary. It is important to note that effecting the reduction

of a(At) in the summer, when #0 is small at the time of the sensor overpass, will require that Psky is

measured several hours prior to the overpass and that the stability of the atmosphere be monitored

continuously between the times of the measurement and the overpass. Column H20 is required

only for sensors for which S_(A) overlaps water vapor absorption bands.

8. Maintenance of Calibration

The strategyofmaintainingthe sensorcalibrationinvolvesutilizingthe on-board solardiffusers

to monitor short-termvariationsin the calibration.However, as the reflectanceof such diffusers

may graduallydecay,itisnecessaryto assessthe long-termstabilityby othermeans. The strategy

we plan to monitor long-termvariationsisthe use ofan unattended measurement of Pw at a single

sitewhere atmospheric correctionof the satellitedata issimple enough that itwillnot introduce

significanterrorin the retrievalofPw. Comparison of the satellite-retrievedand directly-measured

pw over long time periods (,,,severalmonths to years)willprovide a measure of the long-term

variationin the calibrationof the sensor.In addition,periodicobservationof the moon can also

provide a measure of the long-term stability(SeaWiFS) [Kie_er and Willies/,1996].

To provideknowledge of the long-term stabilityofthe calibrationas wellas a qualitymeasure

of the performance of the sensorand the algorithms,Clark has developed a marine opticalbuoy

system (MOBY) for continuous and unattended measurement of p_(A) near the nadir direction

(radianceexcitingthe ocean propagating toward the zenith).A descriptionof thissystem and its

planned operation isprovided in Clark et al.[1997].Briefly,thisbuoy ismoored ,,_11.3nautical

miles eastof the islandof Lanai in the Hawaiian chain,and provides nearlyrealtime estimatesof

pw(A) near the nadir directionon a continuousbasis.As the sensorwillnot usuallybe lookingat the

sitein the nadir direction,correctionsto the radianceare requiredto account forthe bidirectional

19'



effects of the upwelling subsurface spectral radiance [Morel and Gentili, 1991; Morel and Gentili,

1993; Morel and Gentili, 1996; Morel, Voss and Gentili, 1995]. The magnitude of these effects can

be assessed and corrected through a combination of models and direct measurements of the angular

distribution of upwelling subsurface radiance in the vicinity of the site under a variety of conditions

[ Vo88, 1989]. Although this data will be of somewhat lower quality than ship-acquired p,, data it

should be sufficiently accurate for monitoring the long-term performance of the instrument.

9. Concludlng remarks

As describedin the introduction,itisnot possibleto calibrateocean colorsensorsinthe labo-

ratorywith the requiredaccuracy priorto launch. In thispaper we have summarized methodology

to effectin-orbitcalibrationadjustment of ocean colorsensorswith an accuracy sufficientto pro-

vide p_ with the requireduncertainty.The "vicarious"calibrationuses a combination of surface

measurements and the atmosphericradiativetransferprocessto predictthe valuesof the spectral

radiance that the sensorismeasuring. As such, thiswork isan extension(to the ocean) of the

methodology used earlier to calibrate principally land-viewing sensors [Fraser and Kaufman, 1986;

Koepke, 1982; Slater et al., 1987; Slater et sd., 1996].

Conditionsarechosen (veryclearatmospheres withnonabsorbing aerosols)so thattheradiative

transferprocess introduces very littleerrorinto the estimates,i.e.,conditionsunder which the

atmospheric correctionalgorithmshould provide excellentretrievalsofp_, and for which errorin

sensorcalibrationare particularlyevident(especiallyin the blue).

The calibrationadjustment isinthreeparts.First,the calibrationerrorin the visiblebands is

reduced relativeto that at At by using surfacemeasurements of p,,(A),_'_(A),and p_c(A). This in

itselfcan provide a calibrationthat enablesretrievalof p_(A) from pt(A)with nearly the required

accuracy (Figure3). Next, the errorat At isreduced by making measurements of the sky radiance

and r, from a ship,or an islandlocation,simultaneously(orcontemporaneously) with the satellite

overpass.Inversionof the sky radianceprovidesthe radiativepropertiesof the aerosol,and these

can be used to estimate the desired pt(A_) [Gordon and Zhang, 1996]. Finally, as solar diff_ers on

SeaWiFS and MODIS provide the capability of monitoring the short-term radiometric sensitivity,

pw(A) is continuously measured at a fixed location and compared with its retrieved counterpart to

monitor variations in the long-term racliometric sensitivity of the sensor.
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Table 1: Values of a(A_) required to produce a nearly

correct e(A_, AL) for the examples in Figures 2a and 2b.

(_'r,,)
412 0,003

443 0.005

490 0.008

520 0.01

55O 0.015

670 0.02

765 0.03

Table 2: Reflectance for M80 mode/near na_r.

(00 = 60 °, r,(865) = 0.1, A in rim)

A

443

555

765

443

p,.(._) t,,,,,,(_)
0.11948 0.02667

0.04923 0.00348

0.01331 0

0.00806 0

t.,,,,,o(._)
0.00140

0.00174

0.00173

0.00156

p,(A)+ p,.(A)
0.00939

0.00905

0.00793

0.00752
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Table 3: Summary of residual errors a(A_) after calibration adjustment.

0

0

0

0

0

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

6p,.(,x)6p_,_(;_)
(%) (%)
0 0

0 0

0 0

+5 0

0 +50

0 0

0 0

0 0

+5 0

0 +50

0 0

0 0

0 0

0 0

0 0

+5 0

-5 0

0 +50

0 -50

E _MS

,I

J

,(

,I

,/

,I

,I

,t

,I

J

,I

,I

,r

J

(%)
0

±0.18

+0.38

+0.90

:F0.14

0

+0.34

+0.68

+0.85

±0.17

-0.59

-0.28

+0.02

-0.90

-1.21

+0.26

-1.44

-0.70

-0.48

_(555)
(%)
0

+0.48

+0.97

±0.32

+0.02

0

±0.81

+1.62

±0.27

-I-0.11

-1.38

-0.64

+0.09

-2.11

-2.84

-1.10

-1.65

-1.34

-1.41

_(z65)
(%)
0

,1,1.64

+3.27

0

,1,0.43

0

,1,1.97

,1,3.93

0

,1,0.19

-0.85

+1.07

+2.99

-2.77

-4.68

-0.85

-0.85

-0.57

-1.12

_(865)
(%)

0

,1,2.5

,1,5.0

0

0

0

-I-2.5

,1,5.0

0

0

0

+2.5

+5.0

-2.5

-5.0

0

0

0

0

Table 4: Measurements required for vicax/ous calibration.

Reduction of a(A¢),Ai < Al Reduction of a(A_)

p=(A,)angulardistribution

_-.(,x_)/,-.(,x,)
p,=(.x,)

Assess horizontal variation of p.(A_)

Column H=0 Column H= 0
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Long Term Maritime Aerosol Optical Depth Analysis: Program
Description and Results

Ellsworth J. Welton, Kenneth J. Voss, and Joseph M. Prospero

To Be Submitted to the Journal of Geophysical Research: Spring 1997

Abstract:
The radiative properties of atmospheric aerosols are an important element of

the global radiation balance and in applications such as remote sensing. One

of the most important radiative properties is the aerosol optical depth (AOD)

and it's associated wavelength dependence; characterized by the Angstrom

exponent, t_. Long term measurements of these aerosol features taken at

various locations are necessary to track seasonal patterns of radiative

behavior and to determine characteristic differences in the optical properties

of different sites. An AOD measurement program was begun in August of

1993 to determine the radiative properties of aerosols over existing

Atmosphere/Ocean Chemistry Experiment (AEROCE) sites in Miami,

Florida, Bermuda, and Barbados. A description of the radiative program,

instrumentation and calibration procedures, the methodology employed to
determine the AOD and oc, and the final results obtained from the

measurements axe presented. Analysis of the AOD and Angstrom exponents
in terms of seasonal variations and unique site characteristics were
performed as well.

Keywords: Aerosols, Optical Depth, Angstrom Exponent, sunphotometer, shadowband



1. INTRODUCTION

Thereis relativelylittle informationon theclimatologyof atmosphericaerosols,particularly

over the ocean.However, theradiativeeffectsof marineaerosolsdirectly alter terrestrialoptical

properties,suchastheplanetaryalbedo,andmayplay animportantrole, directly and indirectly, in

theglobal climate[Char&on, 1992]. In addition to the terrestrial impact of marine aerosols they

also affect our ability to extract surface information from satellites, in particular for ocean color

remote sensing [Gordon, ????]. Knowledge of the aerosol optical properties are necessary to

correct for these effects in both Global Circulation Models and in satellite correction algorithms.

The most commonly measured aerosol optical property is the aerosol optical depth (ADD),

which determines how the aerosol attenuates the direct solar beam. The total optical depth, "r(A), is

defined by

z'(A) - m(O_) Ln (1)

where re(O,) is the air mass at zenith angle 0_, Eo(A) is the extra-tertv.strial solar irradiance

(solar constant) at wavelength ,;t, and E(_,) is the direct, unscattered solar irradiance at the

surface. For wavelengths that lie outside the usual atmospheric gas absorption bands, the total

optical depth may also be written as the sum

(2)

where z',(g) is the Rayleighopticaldepth due to molecularscattering, Z'o(A,)is the Chappius

band ozoneopticaldepth. _. (,1.)is the opticaldepth due to water vapor absorption,and _:. (;t) is



the aerosol optical depth. The basic experimental method of acquiring the AOD from the total

optical depth has been outlined in several papers, most notably Shaw [1979] and King et al.

[ 1980].

The spectral variation of the AOD can be used to extract additional useful in/brmation on

the aerosols. One convenient spectral parameterization uses the thct that the AOD is often

proportional to some power of the wavelength [Angstrom, 1964], and is written as

r (x) = 3;t ,
(3)

where 2 is the wavelength, a is the Angstrom exponent, and fl is a scale factor. In the special

case of a Junge type size distribution (dn/dr = Cr (_*) ), the Angstrom exponent is related to the

slope of the size distribution of the aerosol scatterers [Van de Hulst, 1981]. The exponent, or,

generally varies from zero to two, with lower exponents representing a lower ratio of small to

larger sized particles than in the case with a higher exponent.

Greenhouse gases are typically long-lived and diffuse, and while they are important, their

effects can be modeled. Aerosols, by contrast, have short lifetimes and are highly inhomogeneous

and variable. To determine the possible radiative impact of aerosols, long term studies of the

optical properties of the aerosols at many locations are required. As one of our objectives is to

determine the optical climatology of the aerosols over the ocean, these measurements can be

performed from ships or small islands. Island locations are convenient for multi-year observational

records as local observers can be used and logistical problems are reduced.

In order to obtain long term data sets of the AOD and other physical aerosol measurements,

hand-held sunphotometers were used at existing AEROCE (Atmosphere/Ocean Chemistry

Experiment) sites in Miami (Florida), Bermuda, and Barbados. Utilization of the AEROCE stations

[Reference ??.7] for the sunphotometer measurements was advantageous because problems

associated with operating long term remote sites in foreign countries were reduced. In addition,

2



thesesites perform a varietyof measurementsof the chemical and physical properties of the

boundary layer aerosols. The hand-held sunphotometers were replaced with Automated Multi-

Filter Rotating Shadowband Radiometers [Harrison et al., 1994] by the end of 1994. The

shadowbands create a more complete data record as they automatically sample all day, pertbrm a

potential calibration each day (dependent on weather), and also measure diffuse irradiance. The

shadowbands operated concurrently with the sunphotometers /br several months during the

instrument replacement process. Table 1 indicates the geographical information and time period of

the sunphotometer and shadowband measurements at each site. The instrument calibration

procedure, methods of data selection, aerosol optical depths, and Angstrom exponents recorded for

each site are presented in this paper.

2. INSTRUMENT PROGRAM DESCRIPTION AND CALIBRATION

The sunphotometers used to generate the AOD data sets in Miami, Bermuda, and Barbados

each had nine channels containing an interference filter. New f'dters were installed in each

instrument at the beginning of the measurement period reported in the paper. Identical f'dters,

selected from the same lot, were used in all the sunphotometers. The spectral bandwidth of each

sunphotometer channel filter had a passband approximately 5 nm wide centered at wavelengths

from 380.2 to 1025.9 nm (Table 2). Each shadowband had seven channels containing an

interference filter, except for channel one which was a broadband channel (no spectral f'llter). The

spectral bandwidth of shadowband Filters two through seven are I0 nm wide, and are centered at

wavelengths from 410 to 940 nm (Table 2). Channel seven of the shadowbands is located in a

water vapor absorption band in order to obtain "t',,(A,). Neither water vapor analysis or broadband

studies were a focus of this project, therefore data from shadowband channels one and seven was

not used. The remaining triter wavelengths in each instrument were chosen to avoid strong

absorption bands such as water vapor, thus simplifying equation 2 as _" (A) was taken to be zero.



However, avoidance of the ozone Chappius band was not possible, therefore ozone absorption

must be taken into account in the data reduction process.

The sunphotometers were operated by on site personnel who recorded measurements at

approximately 10:00 am and 3:00 pm local time respectively. The shadowbands ran automatically,

eliminating the need for an on site operator, however, on site personnel are needed in the event of

instrument malfunction or equipment upgrades. The Miami shadowband sampled data every

minute throughout the day, while the Bermuda and Barbados shadowbands sampled every four

minutes to reduce the number of data downloads per week. As the shadowbands pertbrm

measurements continually, each day offers the potential of a Langley calibration [Shaw, 1983].

Therefore the calibrations for the shadowbands are more complete than those for the

sunphotometers.

A calibration record (history) for each instrument was complied in order to account for me

shifts in the solar constants of each channel, often caused by degradation of the filter. The

calibration record for an instrument refers to the plot of the date versus Eo (2,) for the length of the

entire data set. A fit to this plot allows the solar constants, on a day that did not allow a Langley

calibration to be performed, to be calculated using the fitted equation. An error correction

procedure was then employed for both instruments to modify the conventional Langley calibration.

The sunphotometer and shadowband calibration procedures are outlined below.

2a. SUNPHOTOMETER DATA PROGRAM AND CALIBRATION

A sunphotometer was located at each site, while an additional sunphotometer was used for

calibration processes during and after the measurement period. Initially the Langley method was

used to perform the calibrations, for each sunphotometer, in Miami prior to deployment into the

field. The instruments were then sent into the field, and operations began as indicated in Table 1.

With the exception of poor weather days, the measurements continued uninterrupted for the
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remainderof the sunphotometerprogram.Sealevel Langleycalibrationsin these locationsare

difficult dueto atmosphericinstabilityandcloudiness.Thusit wasnotpossibleto performroutine

Langley calibrationsat the Bermudaand Barbadoslocations.The Miami instrument(M114) was

calibrated several times during the sunphotometer program, both in Miami and in Brainard Lake,

Colorado. An additional sunphotometer (Mll9), not tied to any location, was extensively

calibrated during an oceanographic cruise, off of Hawaii, in October and November of 1994. Post-

calibrations for the Bermuda and Barbados instruments were performed in Miami at the end of the

sunphotometer program (through a method described below). Calibration values were obtained for

days within the data set using an interpolation between the initial calibrations and the post-

calibrations. Prior experience with the sunphotometer interference t-flters led us to use an

exponential function to fit the decay of these f'flters for the interpolation.

It was difficult to perform full Langley calibrations on the instruments at the end of the

sunphotometer program due to poor weather. The Miami instrument was calibrated several times

during the initial startup, and throughout the program, and was considered to be the best calibrated

of the sunphotometers. The Ml19 sunphotometer was well calibrated, using the Langley

procedure, during October and November 1994 and was used to calibrate the Miami instrument at

the end of the sunphotometer program through a cross-calibration procedure. A cross-calibration

assumes that two identical sunphotometers are present, one is fuUy calibrated and is referred to as

the reference instrument, the other is uncalibrated and referred to as the target instrument.

Simultaneous direct beam measurements are made with each sunphotometer at the same location.

The resulting equations for each instrument are

E,(A,) = E_ (_t,)exp[-x'(A)m,(d_)], (4)

Et(A, ) = E_(A,)exp[-x'(A,)m,('0_)], (5)
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where the r subscript denotes the reference instrument, the t subscript denotes the target

instrument, and m(O_) is the air mass at zenith angle, 0_, computed using the formula provided

by Kasten and Young [1989]. Er(/_ ) and Et(_, ) are the measured direct solar irradiances m

instrument counts, and Ero()_ ) and Eto(_. ) are the extraterrestrial solar irradiances in instrument

counts for the reference and target instruments. As Ero()t ) is known, the total optical depth is

calculated using the calibrated instrument. Once the total optical depth is determined, Eto (/L), can

be written as

E,o(z):E o(Z) (6)

for each wavelength of the sunphotometer. This cross-calibration procedure was useful as the

weather need only be stable and cloud free for a small window of time, as opposed to the

requirements for a Langley calibration. The total optical depth changes for different air masses,

therefore the two values, mr(O:) and m,(Oz), should be as close as possible to avoid errors in

calculating E,, ().). If the measurements are made close to solar noon, the air mass changes very

little during the measurement process and the exponential term is negligible. This procedure also

assumes that the instruments have matched wavelengths (_,, = _,t), and in our case the filters were

matched for all sunphotometers.

Once the Miami instrument, (M114), had been cross-calibrated against M119, the cross-

calibrations were added m the calibration history for M114, and it was considered fully calibrated.

MI14 was then used as a reference instrument during cross-calibrations for the Bermuda and

Barbados sunphotometers. These cross-calibrations were then added to the calibration history for

6



Bermuda and Barbados. The calibration histories for the three locations are given in Figs.

and lc. The solid line is the exponential fit to the calibrations given above.

An error correction procedure was

procedure assumes that there is some error, Z(A),

aerosols above the sites, on average, obey the

la, lb,

utilized to fine tune these solar constants. This

present in the solar constant, and that the

Angstrom spectral dependence (Eq. (3)).

Redefining the solar constant in terms of this error and the true solar constant yields

eo(A)= (7)

where Eo(A) is the previously derived solar constant, Z(;I,) is the error factor, and E_(A) is the

true solar constant. The measured total optical depth is given by

(8)

using Eq. (7). The true optical depth would be

,

(9)

as follows from Eq. (1). Using Eqs. (8) and (9) the following equation can be calculated

Ln[x(Z)] = [_'(A) - r'(Z)]m(O, ) (lO)



relating the error t'actor Z(g), to the difference in measured and true total optical depths. The

calculated Rayleigh optical depth [Hansen et aL, 1974] and the ozone optical depth, computed

using ozone prol'fles provided by Klenk et al. [ 1983], are subtracted from both the measured and

true total optical depths. The resulting equation

Ln[z(&)] = ['r,, (,;t,) - _'_ (g)]m(O':), (11)

relates the error factor, X(A), to the difference in measured and true aerosol optical depths.

During the calibration process, a sunphotometer reading consisted of recording E(Jl.) for

each of the nine wavelengths. The AOD derived from E(A), using Eo(A,), was then fit to Eq. (3),

determining fl and a, and this equation was then used to generate _(g) producing the f'lnal

relation

LntzCg)] = ['r,, (A.)- flg-_']m(O:). (12)

Therefore, Ln[x(A)], is the difference between the measured AOD and the Angstrom fitted ACID

for a given wavelength, times the air mass. This factor determines the variation from the Angstrom

power law for that particular measurement.

The AOD, for each location's entire data set, was first calculated using the original solar

constants, and the Rayleigh and ozone models cited above. For each day, the deviation of the AOD

from the Angstrom power law was determined and used to generate the error factor X(_,). The

error factors calculated during the sunphotometer program were fit by another exponential

function, yielding an equation for X(A,) for each instrument. The resulting error factors were used

to correct the solar constants according to Eq. (7). The error-corrected solar constant histories are



plotted in Figs. la, lb, and lc asthedottedlines.Channelsone (380.2nm) and nine (1025.9 nm)

werenot processed,andwere not usedin this paper.The 380.2 nm tilter degradedrapidly in all

instrumentsandwasconsideredunusable.Channelninedeviatedsignificandyfrom theAngstrom

powerlaw, perhapsdueto theweakwater vaporabsorptionbandaround1000nm [Shaw, 1979]

which wasnot consideredin our analysis,or theeffectsof seaspray [Villevalde et. al., 1994].

These error corrected calibration values are not significantly different from the original values but

provide a fine tuning adjustment.

2b. SHADOWBAND DATA PROGRAM AND CALIBRATION

The shadowbands began operation in the fall of 1994. The time periods of the shadowband

program are indicated in Table 1. Gaps are present in all data sets due to instrument malfunctions

and the subsequent time needed to repair the problems. A gap exists in the Miami data from

September 1995 to November 1995. This was caused by data communication problems and poor

weather. Normal operation began again in December 1995. The Bermuda data gap, also caused by

data communication problems, resulted in the loss of data from July 1995 to November 1995. The

communication problems were fixed in December 1995 and shadowband operation was continued.

The Barbados shadowband data set only includes data from May 1995 to August 1995 due to poor

phone line connections for data transfer and unstable electrical power at the site. These problems

have been fixed by new phone line connections to the site and the installation of an uninterruptable

power supply (UPS) for the shadowband. Barbados shadowband operation began again after the

end of 1995.

All of the shadowbands collect enough data each day to perform two Langley calibrations,

one in the moming and one in the afternoon, weather permitting. Therefore all that remains is to

determine which of the days has weather suitable for Langley calibrations. Each shadowband's

data set was analyzed using the Objective Langley Regression Algorithm (OLRA) [Harrison and

Michalsky, 1994] in order to recover the solar constants for each shadowband. The OLRA rejected

9



a large number of the Langley calibrations for all three sites due to the variable tropical weather at

each location. However, this strict criteria assures that the remaining Langley calibrations are

accurate. Once the solar constants for each shadowband were determined using this technique, a

calibration history was compiled in the same manner as tbr the sunphotometers. The calibration

histories for each shadowband and interpolations are depicted in Figs. 2a, 2b, and 2c. There were

few solar constant values recovered tbr the Barbados shadowband due to the small time period of

the data set. Therefore, the solar constants for the Barbados shadowband were obtained by using

the mean value of the solar constant tbr each channel instead of the interpolations described above.

A linear fit to the calibration histories was performed for MI of the channels except channel

four (610 nm) of the Miami shadowband, and channels four and five (610 and 665 nm

respectively) of the Bermuda shadowband. The filters in these channels were found to stabilize

after a period of time making a singular linear fit unsuitable. Instead a linear fit was performed on

the first part of the calibrations, ignoring the stabilized portion, and a second linear fit was

pertbrmed on the stabilized portion.

These Langley calibrations were fine tuned with another procedure. This procedure

assumes that there is some error, _t(A,), present in the solar constant, but the assumption that the

aerosol above the sites obey the Angstrom spectral dependence on average is not necessary. As

more measurement samples are recorded by the shadowband than with the sunphotometer it is

possible instead to analyze a month's worth of data to test for dependence of the AIDE) on solar

zenith angle. By definition, the set of minimum aerosol optical depths should not depend on solar

zenith angle (air mass), over the span of one month. A plot of the AOD versus m(O z)-1 for a given

month should have the lowest AOD's represent a background AOD. A linear fit to the lowest

AOD's in the plot described above should have zero slope and a y intercept equal to the average

background AOD for that month. A slope not equal to zero would indicate that the background

AOD has some dependence on the air mass that may only have been caused by error in the solar

constant, Eo (_,), [Reference ???, personal correspondence] as detailed below.
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Assuming that there is some error,

equation

lu(_), in the solar constants yields the following

Eo(Z)= U(Z)e'(Z),
(13)

where Eo (A) is the previously derived solar constant, p.(_.) is the error factor, and E o'(2,) is the

tree solar constant. Inserting Eq. (13) into Eq. (1) produces the following relation

1
m(Oz) m(baz)

EP

Ln[E'(2,)] Ln[/2(X)] +z"(2,), (14)

v'(A) is the true optical depth as it contains the true solar constant, E_(Z). The Rayleigh and

ozone optical depths are not dependent on the calibrations so they may be subtracted from both

sides of Eq. (14) to produce the equation

_'_ (A)= m_O,) Ln[/2(A)] + _"(A). (15)

Equation 15 may only be used when both ra(A ) and z'_'(A) represent the background (minimum)

AOD, as other values of r,(A) and v'(;t) may have a dependence on the air mass. Therefore, the

slope of the background AOD versus m(O.)-_ plot described above is the natural logarithm of

p(A,). This procedure may be used to obtain monthly values of /a(A) for each shadowband

channel. The shadowband error corrected solar constants were obtained by first calculating the

I1



solar constantfrom the linearfit andthenusing theappropriatemonth's /a(/1,) in Eq. (13). The

error corrected solar constants are plotted in Figs. 2a, 2b, and 2c..

3. AOD AND ANGSTROM EXPONENT CALCULATIONS

The final aerosol optical depths and corresponding Angstrom exponents were calculated for

Miami, Bermuda, and Barbados using both the sunphotometer and shadowband data. The

uncorrected calibration fits and the error corrected calibrations described above were applied to the

data sets separately in order to gauge the usefulness of the error correction procedures. Data

f'dtering procedures were then used to remove optical data affected by atmospheric phenomena

other than aerosols, such as clouds. Both data tiltering procedures were similar, but due to the

nature of the instruments, a different filtering procedure was employed for each instrument. The

t-fltering procedures and comparisons between the uncorrected and error corrected results are

described below.

3a. SUNPHOTOMETER DATA FILTERING PROCEDURE

The aerosol optical depths and Angstrom exponents were only calculated for channels two

to eight, for the respective data sets, due to the calibration problems with channels one and nine.

The sunphotometer data filter contained three levels. Level one determined the deviation of the

measured r_(A,) from the power law fitted "r_'(A,) for a given measurement, similar to the error

factor procedure above. If the magnitude of the deviation between 1:_(A) and z',"(_,) was greater

than 0.1, then the measured AOD at that wavelength was rejected. This was done to screen out

AOD measurements that did not resemble an Angstrom power law. The aerosol optical depths that

survived this filter were then subjected to level two of the Filter. It should be noted that a given

measurement consists of two series of readings, E(,_,), for each of the nine channels. This was

12



doneto ensurethattheatmospherewasstableduring themeasurement,astheopticaldepthshould

notchangeappreciablyduringaspanof five minutes(theapproximatetimefor onemeasuremen0.

Thelevel two filter examinedthedifferencebetweenthefirst andsecondmeasuredaerosoloptical

depths.It"themagnitudeof thedifferencewasgreaterthan0.03, then thatchannelwas rejected.If

only one of thetwo dual readingssurvivedthelevel onefilter, then the level two filter was not

performed.Finally, the level threefilter determinesit"at leastsix of thesevenchannels(one and

nineareexcluded)remain,andchannelstwo and eightareamongthem.If this was true then this

measurementwas consideredusable,else theentire measurementwas discarded.The tolerance

settingsin the t-flterwere the result of a trade off betweeneliminatingquestionabledata, and

retainingenoughof thedatasetto analyze.ThisFilter process ensures that the atmosphere is fairly

stable, the AOD roughly resembles an Angstrom power law formula, and there are enough

remaining aerosol optical depths to accurately perform a fit to the Angstrom power law (/'or the

wavelength range, 412.2 nm to 861.8 nm only). The AOD was then calculated for the surviving

measurements, and used to generate Angstrom parameters from equation 3. These surviving

measurements were recorded as the optical properties for that sample.

3b. SHADOWBAND DATA FILTERING PROCEDURE

The shadowbands record data throughout the day, as opposed to the sunphotometer's

singular morning and afternoon measurements. Therefore, another method of f'dtering out bad data

was employed. The filtering procedure used for the shadowband data was based on the Sliding

Window Optical Depth Procedure (SWODP) [Jim Schlemmer, personal correspondence]

developed at the Atmospheric Sciences Research Center at the State University of New York,

Albany.

The University of Miami SWODP (MSWODP) used the aerosol optical depths for each

sampled measurement by the shadowband. The MSWODP then analyzed one day at a time,

starting with the first measurement sample. The term, "sliding window," originated because the
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MSWODPanalyzeda twenty minute"window" of data to determine if the window contained

usable data. Three filtering levels were then applied to the resulting AOD window by the

MSWODP. The first triter performed a linear least squares fit to the AOD, and then calculated the

individual AOD deviations from the fit. It" all of the aerosol optical depths were within 0.01 of the

linear fit then the MSWODP continued on to the next filter level for that window. If the first filter

test tailed then the MSWODP slid the window ahead one sample measurement and applied the t-dter

again to the new window. If the f'dter one test was successful then the MSWODP applied falter

two. This t-dter level determined the mean AOD for that window. It" the mean AOD was less then

1.0 then the MSWODP recorded the mean AOD and corresponding Angstrom exponent for that

window. It" the mean AOD was greater than or equal to 1.0 then the entire window was rejected,

and no data was recorded for that window of time. Regardless of the outcome of the filter two

check, the MSWODP then slid the window ahead by twenty minutes to the corresponding sample

measurement, and the process was started over again from the level one filter. The MSWODP

output twenty minute averages of the AOD, and the corresponding Angstrom parameters from

equation 3, for each day in the data set. Each twenty minute window of data output by the

MSWODP contained aerosol optical depths that did not vary too wildly and that had AOD values

reasonable for atmospheric aerosol, not clouds. The surviving measurements were recorded as the

optical properties for the time of day falling at the center of the window.

3c. COMPARISON OF UNCORRECTED AND ERROR CORRECTED RESULTS

The spectral variation of the aerosol optical depths for each channel of each sunphotometer

and shadowband are shown in Figs. 3a, 3b, and 3c. Each figure displays the entire data set's

uncorrected and error corrected AOD results for the sunphotometers and shadowbands.

The uncorrected sunphotometer results are not much different from the error corrected

results, indicating that the data was not changed significantly by the error correction procedure.

However, an improvement to the Angstrom power law fit was obtained using the error corrected
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sunphotometerresults.The averagechi-squareddatafitting parameter was reduced for each data

set, indicating a better power law fit. The Miami chi-squared data fitting parameter was 0.086 for

the uncorrected results and 0.034 for the error corrected results. The Bermuda uncorrected and

error corrected chi-squared parameters were 0.065 and 0.012 respectively. Finally, the Barbados

uncorrected and error corrected chi-squared parameters were 0.744 and 0.058. The sunphotometer

error correction procedure assumes that the true AOD follows the Angstrom power law.

Furthermore, the sunphotometer data f'dter explicitly screened out days (for both uncorrected and

error corrected results) that did not accurately fit the Angstrom power law. For these two reasons,

a small improvement in the fits to the Angstrom power law between uncorrected and error

corrected results was expected.

There were significant differences between the uncorrected and error corrected results for

certain channels of each shadowband. However, all of the error corrected changes also resulted in

a better average Angstrom power law fit. In particular, the clear bias in channel five of the Miami

shadowband was removed alter using the shadowband error correction procedure. The Miami chi-

squared data fitting parameter was 0.521 for the uncorrected results and 0.122 for the error

corrected results. The Bermuda uncorrected and error corrected chi-squared parameters were 0.300

and 0.131 respectively. Finally, the Barbados uncorrected and error corrected chi-squared

parameters were 0.071 and 0.059. The shadowband error correction procedure and the

shadowband data Ftlter did not assume any particular spectral form of the AOD. However, results

obtained using the error corrected results more accurately portrayed a power law fit compared to

the uncorrected results.

Level one of the sunphotometer data _ter determined the deviation of the measured AOD

from the Angstrom power law. Turning off levels two and three of the sunphotometer data f'dter

allowed the percentage of measurements rejected by only level one to be determined. The level one

sunphotometer data falter rejected 3% of the Barbados measurements and 7% of the Miami and

Bermuda measurements. Therefore, at all three locations, over 90% of the sunphotometer AOD

measurements resembled an Angstrom power law. Also, there were significant improvements in
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theAngstrompowerlaw fits usingtheerror correctedshadowbandresultscomparedto using the

uncorrectedshadowband data. This improvement indicates that the majority of shadowband AOD

measurements also resembled an Angstrom power law, particularly since no spectral dependence

of the AOD was assumed but the error corrected data more accurately fit the Angstrom power law.

As a result of this analysis, the majority of the aerosol optical depths measured over Miami,

Bermuda, and Barbados were tbund to accurately depict an Angstrom power law in the wavelength

range 400 nm to 860 nm.

4. FINAL RESULTS AND CONCLUSION

The sunphotometer and shadowband results, obtained using the filtering procedures of the

previous section, were merged together and monthly mean values of both the AOD at 500 nm and

the corresponding Angstrom exponent were recorded. This was accomplished for each

measurement site. The monthly mean values for Miami, Bermuda, and Barbados are depicted

graphically in Figs. 4a, 4b, and 4c. Table 3 contains the monthly mean values mentioned above

and the Angstrom scale factor, t, for each measurement site, as well as the total mean values.

Seasonal variability of the AOD existed for each site. Peaks in the Miami AOD occurred

primarily during the May to June periods. The Barbados AOD results also indicated clear peaks

from the May to August periods. The Bermuda AOD results were not as obvious, however,

elevated AOD values were found during the April to June periods. Each site also has shown

minimum AOD levels during the winter months. This pattern of seasonal variability in the AOD has

been documented previously [Maim et. al., 1994; Smirnov et. al., 1995; Husar et. al., Submitted

JGR 1996]. Seasonal trends in the Angstrom exponents were not easy to deduce from the monthly

mean values as the exponents vary widely from day to day, due not only to changing aerosol types

but also to changing meteorological conditions. However, the Miami and Bermuda exponents did

show a tendency to drop during the summer months, relative to levels during the spring and early
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tall. Barbadosexponentsalsohaveshowna tendencyto drop relativeto surroundingmonths,but

duringApril toJune1994andthesummerof 1995.Theseseasonaltrendsin theopticalproperties

for eachsiteareduein largepartto theorigin [Smirnovet. al., 1995] and seasonal variability in the

type and concentration of the major aerosol species found at each site [Welton et. al., 1997].

The high degree to which the aerosols at each site could be characterized by the Angstrom

power law was greater than expected. If there had not been a strong AOD power law dependence

on average, the shadowband error correction procedure would not have correlated as well with the

sunphotometer results. The spectral variation of the AOD is an important parameter in determining

the atmospheric path radiance, used primarily in remote sensing applications. Kaufman [ 1993] has

shown that the path radiance over land can be derived more accurately using aerosol optical depths

derived from an average Angstrom exponent rather than individual measurement exponents, except

for conditions dominated by dust. The tendency of our maritime aerosol optical depth results to fit

the Angstrom power law on average indicates that it may be possible to use the same condition to

generate the path radiance over the ocean. Due to the sharp dilt_rence between the spectra/

dependence of dust dominated AOD and that of other maritime aerosols [Binenko et. al., 1993;

Welton et. al., 1997], it is also possible that the same exclusion conditions apply to the calculation

of the maritime path radiance during dusty periods.

Further analysis of the aerosol optical depth and Angstrom parameter results must take into

account individual aerosol types and concentrations, as well as seasonal trends in the aerosol's

transport from their points of origin. Analysis of this type may be added to the results contained in

this paper to produce a characteristic description of the aerosol over a particular site. Long term

data records of these aerosol properties over several dift_rent sites will also help track trends in

global climate change. The measurement programs described in this paper will continue until the

end of the AEROCE program (DATE??) in order to extend the data sets presented above. In

addition, two more shadowbands have been installed in Tenerife, located in the Canary Islands.

One is located at the mountain top weather station at lzana, a long time AEROCE site, and the other

is located in La Laguna, at sea level. The Tenerife shadowbands will produce optical data close to
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the primary source of north Atlantic ocean dust, the Saharan desert [Prospero, 1995]. Also, they

will allow the comparison of optical properties taken below the aerosol boundary layer to those

taken above it, as the boundary layer often lies between Izana and sea level [reference ...... ].

Finally, specific correlations between aerosol types, concentrations and optical properties are the

subject of another paper by the authors [Welton et. al., 1997].
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Table 2.

Channel

Number

Instrument Channel Numbers and Filter Wavelengths (nm)

Sunphotometer Shadowband

Wavelength (nm) Wavelength (nm)

1 380.2 Broadband

2 412.2 410

3 440.5 500

4 501.8 610

5 551.2 665

6 675.2 860

7 777.9 940

8 861.8 _

9 1025.9 .



TABLE

Month-Year

Aug-93
Sep-93
Oct-93
Nov-93
Dec-93
Jan-94
Feb-94
Mar-94

Apr-94
May-94
Jun-94
Jul-94

Aug-94
Sep-94
Oct-94
Nov-94
Dec-94
Jan-95
Feb-95
Mar-95
Apr-95
May-95
Jun-95
Jul-95

Aug-95
Sep-95
Oct-95
Nov-95
Dec-95

Total

3a:

Miami Monthly Mean Aerosol Optical Depths and Angstrom e_ _
Parameters (Aug93 to Dec95) _,/_,_,

.

0.114 0.024

0.142 0.068

0.142 0.020

0.121 0.034

0.121 0.030

0.120 0.035

0.151 0.073

0.166 0.038

0.243 0.091

0.163 0.058

0.234 0.055

0.075 0.013

0.127 0.058

0.119 0.054

0.093 0.039

0.097 0.041

0.091 0.032

0.115 0.049

0.118 0.020

0.143 0.037

0.288 0.078

0.165 0.053

0.148 0.077

0.099 0.032

O. 141 0.050

0.070 0.022

0.069 0.020

0.080 0.011

0.050 0.013

0.071 0.005

0.083 0.035

0.069 0.030

0.104 0.035

0.111 0.033

0.128 0.057

0.209 0.034

0.059 0.011

0.079 0.026

0.056 0.027

0.049 0.014

0.093 0.019

0.059 0.017

0.062 0.024

0.065 0.010

0.094 0.019

0.108 0.023

0.103 0.030

0.100 0.043

0.045 0.016

0.084 0.034

t_ t_ct

0.734 0.228

0.976 0.374

0.833 0.001

1.269 0.056

0.740 0.398

0.566 0.375

1.063 0.240

0.706 0.553

1.098 0.319

0.217 0.457

0.148 0.100

0.347 0.319

0.524 0.773

0.987 0.509

0.762 0.713

-0.246 0.820

0.443 0.579

0.846 0.501

0.768 0.284

0.480 0.311

1.294 0.199

0.494 0.565

0.347 0.557

1.110 0.565

0.684 0.367



TABLE

Month-Year

Aug-93

Sep-93

Oct-93

Nov-93

Dec-93

Jan-94

Feb-94

Mar-94

Apr-94

May-94

Jun-94

Jul-94

Aug-94

Sep-94

Oct-94

Nov-94

Dec-94

Jan-95

Feb-95

Mar-95

Apr-95

May-95

Jun-95

Jul-95

Aug-95

Sep-95

Oct-95

Nov-95

Dec-95

Total

3b:
Bermuda Monthly Mean Aerosol Optical Depths and Angstrom

 arame, rs Oe 9 )

0.161 0.043 0.104 0.015

0.161 0.041 0.103 0.020

0.117 0.025 0.081 0.018

0.160 0.037 0.102 0.009

0.099 0.012 0.069 0.011

0.102 0.023 0.079 0.005

0.157 0.041 0.099 0.026

0.169 0.050 0.105 0.022

0.134 0.047 0.085 0.030

0.270 0.125 0.170 0.072

0.116 0.072 0.081 0.045

0.126 0.131 0.097 0.125

O. 100 0.061 0.049 0.035

0.075 0.041 0.060 0.015

0.068 0.021 0.077 0.016

0.064 0.028 0.085 0.033

0.081 0.035 0.075 0.023

0.104 0.027 0.059 0.025

0.091 0.050 0.068 0.023

0.172 0.077 0.095 0.034

0.168 0.057 0.088 0.030

0.134 0.069 0.072 0.024

.

.

0.129 0.047 0.086 0.025

m

0.603 0.290

0.622 0.232

0.540 0.214

0.614 0.304

0.531 0.298

0.322 0.372

0.666 0.268

0.667 0.415

0.655 0.259

0.599 0.233

0.474 0.179

0.424 0.334

1.058 0.746

0.288 0.663

-0.209 0.351

-0.920 0.973

-0.236 0.817

0.697 0.616

0.108 0.416

0.818 0.187

0.851 0.318

0.558 0.659

0.442 0_4qq



TABLE

Month-Year

Aug-93

Sep-93

Oct-93

Nov-93

Dec-93

Jan-94

Feb-94

Mar-94

Apr-94

May-94

Jun-94

Jul-94

Aug-94

Sep-94

Oct-94

Nov-94

Dec-94

Jan-95

Feb-95

Mar-95

Apr-95

May-95

Jun-95

Iul-95

Aug-95

Sep-95

Oct-95

Nov-95

Dec-95

Total

3C:
Barbados Monthly Mean Aerosol Optical Depths and Angstrom
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Figure 1 a. Calibration history for the Miami sunphotometer. The solid line is the

exponential fit to the Langley and cross-calibrations. The dotted line is the exponential fit

to the error corrected Langley and cross-calibrations.
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Figure 1 b. Calibration history for the Barbados sunphotometer. The solid line is the

exponential fit to the Langley and cross-calibrations. The dotted line is the exponential fit

to the error corrected Langley and cross-calibrations.
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Bermuda AOD vs. Wavelength: Uncorrected Results (Aug93 to Dec95)
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Abstract

A new system to measure the natural sky light polarized radiance distribution has been

developed. The system is based on a fisheye lens, CCD camera system, and filter changer.

With this system sequences of images can be combined to determine the linear polarization

components of the incident light field. In this paper calibration steps to determine the

system's polarization characteristics are described. Comparisons of the radiance

measurements of this system and a simple pointing radiometer were made in the field and

agreed within 10% for measurements at 560 nm and 670 nm and 25% at 860 nm.

Polarization tests were done in the lab. The accuracy of the intensity measurvments is

estimated to be 10%, while the accuracy of measurements of elements of the Mueller are

estimated to be 2%.

1. Introduction

The intensity and polarization of skylight have long been studied for many reasons.

Early interest involved explaining natund phenomena such as the color of the sky and

rainbows) _ Since the discovery of skylight polarization by Arago in 1809, studies on the

polarization of skylight and neutral points have been emphasized as these can he used as

indicators of atmospheric turbidity. 3'*



Early rceasurements of skylight polarization were made mainly by visual means. As

the semiconductor technology advanced, new photodetectors in conjunction with computer

technology made the automatic measurements of light and its polarization possible. A large

number of optical systems have been developed for observations of polarized light in

various fields. Coulson _ lists the various types of polarimeters developed for observations

of the earth's atmosphere and surface. Although photomultiplier tubes have been used as

detectors for most of the systems, some devices use other detectors such as silicon cells or

photographic film for special purposes. Video polarimetry techniques have also been

developed using three TV cameras for atmospheric science _ and _ cameras for the

natural light field. 6 Imaging Stokes polarimetry using CCD image sensors _ has the

advantage of processing data on a pixel-by-pixel basis; thus data over a wide field-of-view

can be obtained. The polarimeter described in this paper takes advantage of Stokes

polarimetry using a CCD image sensor and a "fisheye" lens as the input optics thus

enabling measurement of Stokes parameters over the whole hemisphere.

This system is based on the RADS-II Electro-Optic "Fisheye" Camera Radiance

Distribution System.* This system uses a "Fisheye" camera lens, a filter changer, and a

cooled CCD image sensor to measure a hemisphere of the spectral radiance distribution.

With the spectral filter changer, measurement at several spectral bands can be performed in

a short time (minutes). By placing dichroic sheet type polarizers in one of the filter wheels,

RADS-II becomes an analyzer-type polarimeter (RADS-I_). With proper calibration,

RADS-IJP enables spectral measurement of the skylight polarized radiance distribution.

The data process involves taking three data images with the polarizers in different

orientations, i.e., the preferred transmission axes oriented in different directions, and these

images combined to acquire three of the light field Stokes parameters.

In this paper we will discuss the overall design of the RADS-IIP system, and the

calibration steps unique to the polarization system, specifically the characterization of the



insmamentin Mueller man,ix representation.Radiometri¢calibrationof the RADS system

without pohL,'ization has been described previously _ and will not be discussed in detail here;

only aspects specific to this system are included and we will show results of a field

comparison with a simple unpolarized radiometer. Spectral polarization radiance

distribution measurements at different sites, aerosol optical thickness, and sun angles will

be presented in a following paper.

2. Background information

It is useful to define the radiometric quantities that we will need. The radiance is

defined as the amount of radiant power, a_P_ , at wavelength _ , within a wavelength

interval dYt and a differential solid angle d_ which crosses an element of area dA and in

the direction making an angle Oto the normal ofdA:

(0,¢)=. d2p (0,¢)
cos0 dAd_d_" Eq. (I)

Implicit in the radiance is the directional dependence of the quantity. The collection of

radiance information for all angles is the radiance distribution. The commonly measured

quantifies of upweliing and downwelling irradiance (E_ and E d respectively) are simply

defined as the cosine weighted integrals of the radiance distribution over the relevant solid

allgies.

To describe the polarized radiance distribution we must have a way to reFresent the

polarization of the radiance in a given direction. A convenient representation is provided by

the Stokes vector. The electric field vector/_ of the light field can be decomposed into two

components, E_ and E,, which represent the magnitude and phase of the electric field

vectors parallel (T) and perpendicular (/') to a reference plane:

gl. F+q.(2)



The refexence plane is normally defined as the plane containing the incident and scatlered

beams in scattering problems. Assuming that a coherent electromagnetic wave propagates

in the Z direction (7 × 2") with a frequency w, and that amplitudes and phases for the

electric fields of an electromagnetic wave in the/" and _ directions are al, a, and 4,8,,

respectively, then

F_= a_cos(kz - _t +_), E, = a:os(kz - cot+8,) Eq. (3)

where k = 2g/_. is the wave constant. In general, the tip of the electric vector described in

Eqs. (2) and (3) forms an ellipse. To describe the elliptically polarized wave three

independent parameters, such as those of the Stokes vector, _° (first introduced by Stokes u

in 1852) are needed,

I = EIE l" +E,E,',

Q =EIEI'-E_E ",
Eq. (4)

U =E_E," + E,E_',

V =-i(ElE ," - E,EI').

For a coherent wave, I, O, U, and V are real quantities that satisfy the following

equation:

/2 = Q_+ U_ + v_ . Eq. (5)

Assume the ellipse has a major axis (length b) and a minor axis (length c), and the

major axis makes an angle Z with the/'direction. The four Stokes parameters can also be

expressed in terms of I, Z, and _ (tan [3 : c/b) by direct analyses as:

l=/t+l ,,

Q = I, -I,= I cos 2_ cos 2X,

U = I cos 2[_ sin 2Z,



v = I sin 2[3. Eq. (6)

In representing the wave using Eqs. (4) or (6), we have assumed a constant amplitude

a.tid phase. However, the actual light field consists of many simple waves in very rapid

succession. As a result, measurable intensities am associated with the supcrlx)sition of

many millions of simple waves with independent phases. In this case it is straightforward

to prove that

p > Q2 + U2+ V2. Eq. (7)

The degree of polarization, p+, and the degree of linear polarization, P(linear), are

useful parameters and can be defined as:

p+ = (Q2+ U2+ VZ),t_//

P(linear) - fQ2+ U2)_aI I

The plane of polarization and the ellipticity are defined as:

Eq.(8)

Eq.(9)

tan 2X= V/Q, Eq. (10)

sin 2f_ = V� (Q2 + 0-2 + v z )la . Eq. (11)

For partially polarized light, the Stokes parameters (I, Q, U, V) can be decomposed

into two vectors, a completely unpolarized component and elliptically polarized _nt

as

=Q +o

+uX+v2)t/2 l

Eq. (12)

Transformation of a Stokes vector, (Io, Q,, U°. V,), into a new Stokes vector, (I, Q, U,

I0 by an optical process (scattering, optical elements, reflection, refraction, etc.) can be

represented as a linear process with the Mueller matrix:

5



!] r'''' _'2 _'_ _"*1".1
:/''_' _? _?_"_'1_./
/_ _ ,,,,_,_41,.,°/
LM41 M42 M43 M44.I.V,,J

EXl. (13)

Consider an optical instrument with elements such as birefringent crystals, sheet

polarizers, quarter-wave plates, imaging lenses, filters, etc. In general this instrument may

cause absorption, scattering, reflection, and refraction and these actions will be represented

by the system's Mucllcr matrix. If a polarization insensitive detector (such as a CCD army

with thelightatapproximately normal incidence)isplaced behind the opticalsystem, then

only the intensity (/) of the lightexiting the system is measured. In general this intensity is

due tothe system's Mucllcr matrix and the Stokes vectorof lightincidenton the system. If

the system Mueller matrix is known and variable, it is possible that combinations of

_ments may be used to measure the Stokes vector of the incoming light field. For

example, when a linear polarizer is used as the optical element, its Mueller matrix can be

represented as follows:

Mp =

0 0

(_-k2)_.2_ o
(_÷_-_A-_)_,_,o
(_÷_)s_v,÷'-A-_-_,o

0 2_

Eq. (14)

where k i and k_ are the transmittances of the polarizer along the preferred axis and an axis

90* to this axis. V is the angle between the polarizer preferred transmittance plane and a

reference plane. Ira sequence of perfect polarizers (kt=l and k 2 ffi 0) with _r= IT, 45*, 90*

6



arc usedasanalyzersof an incoming Stokesvector (Io, Q., Uo, V°) then the resulting

intensities measured by a detector after the polarizers would be

(v-0) 6-t.+Q.

(v=4:*) :=t.+u. Eq. (15)

(v =00°) 6 =t.- Q.

By combining these measurements three elements of the incoming stokes vector Io, Q, and

Uo can be determined. If the _ polarization element, Vo, is required than an

additional step using a circular polarizer as an analyzer is needed. In general however, light

in the atmosphere is not circularly polarized, so we will not measure this quantity. In the

ocean, due to lhe existence of water-air surface, light may undergo total reflection at the

surface and return back to the ocean, this process will introduce a small amount of

circularly polarized light.t2

These equations form the basis of analyzer polarimctcrs, such as the RADS liP. What

must be determined, through the calibration process, are the instnm_ntal Mueller matrix

elements with each orientation of the internal polarizers. This calibration process will be

discussed below.

3. Instrument description

The development of the electro-optic radiance distribution camera system (RADS) has

enabled rapid and accta'ate measurement of the spectral radiance distribution, txs A block

diagram of this system is given in Fig. 1.

The central featun_ of RADS-II are "Fisheye" optics which allows the radiam_

distribution over a whole hemisphere ( of spatial directions) to be imaged on the 2-D image

sensor through the imaging optical system, a remotely controlled filter changer assembly

which allows the g3ecu'a/measurement region _o be changed rapidly, and, in the case of



RADS liP, a polarization filter wheel which allows the Mueller matrix of the instrument to

be varied. The integration time of the CCD sensor is determined by an elecu_m_hanical

shutter, which is controlled by a computer interface card. Typical image integration times

are between 0.5 and 15 seconds; thus measur_nt takes place rapidly. The acquired

image is digitized using a 16 bit A/D converter and the digital images are stort_i in a hard

drive in the associated IBM/PC computer.

The CCD camera system uses a solid state StarScape ]I CCD camera from First

Magnitude Corp., l' which adopts the TC215 image sensor from Texas Instrument. Tim

TC215 is a full-frame charged-coupled device (CCD) image sensor that provides high-

resolution image acquisition for image-processing appLications. The image format

measures 12 mm horizontally by 12 nan vertically. The image are_ contains 1018 active

lines with 1000 active pixels per line. Six additional dark reference lines give a total of

1024 lines in the image area, and 24 additional dark reference pixels per line give a total of

1024 pixels per horizontal line. The digitizer adds 32 m(_ dummy lines and 32 nx_

dummy elements each line, thus the actual size of a digital image is 1056 x 1056 pixels.

The image acquiring software provides binning featt_s and in all of our images the data

were binned into 2x2 pixel samples resulting in a 528 by 528 format; thus the effective

pixel size is approximately 24 _ x 24 gin.

A series of lens relay optics transfers the bundle of Light rays from the fisheye converter

lens, through the specual and polarization fihers, and then forms an image on the CX:D

array. The final image size is 10.66 mm in diameter for a maximum full angle field of view

of 178", which guarantees the image is well within the 12 mm by 12 mm CCD array. The

maximum deviation of light rays from the instrument optical axis, at the position of the

spectral interference filters, is 120 . This angular dispersion of the light rays is taken into

account in the spectral calibration of the instrument system.



A. Dark Noise Analysis

In the CCD sensor, dark noise (signal with no light flux incident) of the whole camexa

system can be generated by three processes: (a) thermal generation of electrons inside the

sensor array, which depends on sensor temperature and is by nature random, (b) readout

noise, which depends on readout circuitry, and (c) signal processing noise, which depends

on the signal processing (A/D converter) circuitry. In normal operation the tlmrmo-

electrically cooled TC'215 image sensor temperature ranges from -30 ° to -40 ° to reduce the

thermal generation of electrons.

Dark images were obtained by keeping the shutter closed while the C(_ was

integrating. Fig. 2 is the typical dark count pattern along a row and column of the same

image. Inactive and dummy pixels on the edges of the image manifest themselves in both

graphs on the left and right sides. As shown, the clark current in an image is far from

uniform. Figure 3 is the variation in the average dark current of a central area of 10 by 10

pixels on the image as a function of time and sensor temperature. This shows that the dark

current increases linearly as we increase the integration time and increases extxmentially as

the sensor te_ increases, as expected. _s In aU experiments, dark images were

measured imnaxti_ly after data images, keeping the same integration time and

temperature. These dark images axe subtracted from the data images during clam

processing.

Careful investigation of a series of dark images shows that there is also random noise

after the subtraction. In order to reduce this random noise, a series of dark images were

taken under the same conditions. Images were then added, and the standard deviation of

the whole image was calculated as each image was added. Application of a 3 x 3 averaging

filter to the subtracted image is sufficient to maximize the reduction of this random noise.

B. Crosstalk Effect
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Pixel crosstalk can be defined as the interaction between the individual detector

elements of an array detector. Blooming is a particular form of spatial crosstalk that affects

most array detectors. This phenomenon arises when a pixel or a Iocafized group of pixels

is overexposed to light. Blooming has appeared while using TCRI5 imager and manifests

itself as spilling of charge fi'om saturated pixels into neighb(x_g unsaturaled pixels on the

same column. Thus the information content of neighboring pixels is destroyed. This effect

can Limit the accuracy and dynamic range of the sensor and is avoided by adjusting

neutral density filter or exposure time to prevent saturation. In the sky radiance diswibudon

measurements, an occulter has been adopted to block the direct solar radiation in all field

experiments to avoid this effect and to avoid camera lens "flaring".

The row-column crosstalk phenomenon I_ was also found on the TC215 image sensor.

The existence of this effect requires a correction algorithm be applied in image proce_g

programs in order to offset this interaction between pixels. Row-column crosstalk means

that the signal in a single pixel will affect another pixel on the same row. Investigations

were made to gain qualitative and quantitative characterization of the phenomenon. An

experiment was performed which illuminated only the central portion of the array. A

typical result is shown in Fig. 4. In this figure, there are two lines; one line is the signal

from the pixels of the selected row after the pixels in the illuminated region were exposed to

light (peak between 300 and 400), the other line is the same row in a corresponding dark

image. While counts in the illuminated pixels increased substantially, the counts fi'om

pixels in the nonilluminated region decreased significantly with respect to dark counts.

This decrease is due to row-column crosstalk effect and is proportional to the counts in the

illuminated region. A row-column crosstalk correction can be accomplished by

determining the crosstalk signal for all pixels located on a given row and subtracting this

from the net signal of each pixel on that same row. The crosstalk signals for all rows in an

image are determined by the signals in a single column in the dark area of the data image;
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this single column then is duplicated to form a crosstalk signal image in which every

column has the exact same information. The correction for the entire data image can be

ach/eved by subtracting this crosstalk signal image from the data image.

C. Shutter control

An experiment was performed to test the shutter-controlling signals and the accuracy of

the exposure timing. The period of the signal opening the shutter was measured for a

series of specified integration times. The result was that all input times agree with

measured times within 0.2% in a range of lOOms to 50s. Due to the reaction time of the

shutterand the finiteopening and closingtimes,a maximum 5 ms absolute errormay still

exist; thus in the field we use integration times longer than 0.5 seconds, which makes the

maximum error fi'om this source approximately 1%.

4. Calibration

The objective of the RADS-H:P calibration is to obtain a functional relationship between

the incident flux and polarization, and the instrument output. The calibration of the

insu'ument requires a functional set of data concerning the spectral, spatial, and polarization

characteristics of the instrument. _ Voss and Zibordi _ discussed the steps required for

radiometric scalar (non-polarized) calibration of a fisheye camera system. Calibration of

the system linearity, spectral response, camera system rolloff, and absolute system

response were performed by these methods. Only the results of these steps will be

discussed.

A. Linearity and Spectral Calibration

Figure 5 shows theresultof a testof the system I/nearity.In theexperimental setup a

barium sulfate reflectance plaque was illuminated in the normal dh'cction by a stable lO00W

lamp providing source of stable radiance for the camera. The _ viewed the plaque at a

direction 45 degrees to the normal. The fight intensity incident on the array was conlrolled
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by changingtheintegrationtime,andanaverageof 3 by 3 pixels in the center of the image

was obtained. This result shows that the camera output is not exactly linear but can be

defined accurately over three orders of magnitude by a simple power function, with an

exponent of 1.04.

Interference filters are used in the RADS system to select the spectral band of interest.

A calibration was performed to determine the spectral response of the camera system by

illuminating the system with light from a monochrometer and measuring the system

response. Spectral f'dters 1-4 were found to be centered at 439 nm, 560 rim, 667 nm, and

860 rim, with full width at half maximum of 10.5 nm, 10.0 rim, 11.0 rim, and 13.5 nm

respectively.

Figure 6 is a typical system roiloff curve determined in the calibration process; the

method is described in Voss and Zibordi. _ This curve was found to be rotationafly

symmetric around the optic axis of the camera system, so the regression curve shown was

used in the data reduction process. An absolute calibration of the system response was also

done using a 1000 W lamp (FEL standard lamp traceable to NIST) and a Spectralon

reflectance plaque.

B. Polarimatric Calibration

The Mueller matrix of the camera optical system can be represented as a single 4 x 4 matrix.

Although in theory this Mueller matrix of the optical system can be decomposed into a

chain of matrices that are n'presentations of the individual optical components, it is better to

calibrate the system as one unit using prepared sources of partially polarized light. Since

the CCD array only measures intensity, only the first row of the total system MueUer matrix

must be determined. In this case we input known sets of Io, Q°, U°, and V°, I is measured,

12
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and Mll, MI2, M13, and MI4 can be determined. A convenient set of Stokes vectors to

use as input beams are: n

A- B= /" C= , andD= 0 .

L0J
Eq. (16)

where A ishorizontallypolarizedlight,B isverticallypolarizedlight,C is+45 ° polarized

Light, and D is right-handed circularly polarized light. These beams are sequentially input

into the opdcal system and the output light intensity recorded in each case. This provides

four linear equations, the solution of which determines the required elements of the system

Mueller matrix.

Since we produce the linear polarization states with a dichroic sheet polarizer (Gray

polarizing film, Edmund Scientific)l_ we need to measure the spectral polarization and

transmission properties of this polarizer. The principal transmittances of the dichroic

polarizersused were measured and are shown as functionsof wavelength in Fig.7. The

extinction ratios, i.e., the fraction of light transmitted through a closed pair of polarizers,

were found to be less than 1% for visible fight. Transmission for a single dichroic

polarizer acting alone, ranges from 5% to 50% for visible fight. Thus using sheet

polarizers and an unpolarized lightsource, one can generate the followinglightbeams as

input light:

0

0

"1

0

0

C=

"I

0

0

Eq. (17)

In general the ingoing light undergoes interactions with various optical components of

the RADS. If we number each individual optical dement in the order of their presence,

13



then the Mueller matrix can be described by the Mueller matrix of a chain of total number of

optical components as follows:

M = ..... M_ M_ M_, Eq. (18)

where M_ is the Muetl_ matrix of the i-th optical component. For our RADS-II system,

these optical components are lenses, polarizers, interference color filters, and absorption

neutral density filters. For the convenience ofonr analysis, let us denote the Mueller matrix

of the polarizer as M r Light interacting with the surfaces of optical components undergoes

refraction for lenses, reflection and refraction for interfezence filters, absorption and

refraction for neutral density filters.

The Mueller matrix for an isotropic absorption process is the unity matrix (note that

below all MueLler matrices are normalized to M11, and therefore we use the term of reduced

Mueller matrix). The reduced Mueller matrix for reflection and refraction processes has

been derived by Kattawar and Adams" and has the following form:

1 a-r/ 0 0

o_-r/ 1 0 0
o_+r/

0 o o
or+r/

o o o __L_r
ix+r/

F.q. (19)

where a, 11, and y depend on incident and refracted angles. These matrix elements are

plotted in Fig. 8 as a function of incident angle assuming light entering glass (relative index

of refraction, 1.5).

The product of a chain of matrices with the fcxm of Eq. (19) has the same symmetry as

Eq. (19), and this allows us to write the total Muell_ matrix as the product of the polarizer

Mnell_ matrix and the Mueller matrix for all other optical components. In doing so we

have made an assumption that all the contributions to the _'s Mueller matrix due to

14



optical components other than polarizers are from optical components before the polarizer,

mainly due to the fish-eye input optics. This is reasonable because only at the input stage

are large refraction angles involved. Even for the interfeaence filter, every transmitted ray

undergoes two refractions and pairs of reflections. The reduced Mueller matrix for double

reflections at small angles is close to unity and therefore the reduced MueUer matrix for an

interference filter is nothing but double refraction at small angles, which is also close to a

unity matrix. The validity of these assumptions will be tested by experiment. Let M, be the

Muefler matrix due to optical components other than the polarizer, then we can write the

total MueUer matrix as:

M = Mr, M. Eq. (20)

Once kt and k 2 for polarizers are known, the MueUer matrix, Mp, can be calculated. Thus it

is only necessary to measure the MueUer matrix for the camera without a polarizer and the

orientation of the polarizer.

In the following discussions, we use the notation ml2(W1), ml3(Wl) and ml4(Wl)

to denote the reduced Mueller matrix elements for the polarization filter wheel in position 1

and m12(W2), m13(W2) and m14(W2) for reduced Mueller matrix elements for the second

position. Similar notations will be used to describe the Mueller matrix elements for the

third and fotmh polarizer positions. There is no polarizer in position 1, but the polarizers

in positions 2, 3, and 4 are oriented at 0", 45 °, 90" relative to an arbitrary axis.

Figure 9 shows that the measured m14 values for the four filter wheel locations are

close to zero as expected from the form of Eq. (19). The deviations from zero are caused

by the imperfect quarter-wave plate employed in the experiment. As we used a quarter-

wave plate (at 55Ohm, Melles Griot 02WRM009) made of mica, it can only approximate a

quarter-wave plate at the wavelengths of the RADS-II. The Mueller matrix elements m12

and m13 are shown in Figs. 10 and 11. It can be seen that m13(W1) and m14(W1) are

15



close to zero. These are the Mueller matrix elements of the camera without a polarizer. But

ml2(W1) is not zero and varies with incidence angle as T12/Tll of Fig. 8. These results

show that the total MueUer matrix of the camera (without polarizers) is similar to Eq. (19).

Experimentally ml2(Wl) and ml3(Wl) were found to be rotationallysymmetric

around the optical axis. Similar experiments were also performed to test for spectral

dependence, and it was found that the Mueiler matrix is independent of wavelength within

experimental error. In each of these cases the system was found to be rotationally

symmetric, and spectrally constant within 1%.

With this method we have the following reduced MueUer matrix elements: m12(W1),

m13(W1) - m14(W1) = 0. Applying symmetry principles to the MueUer matrix and

considering there are only reflections and refractions involved in the camera case (without

polarizer), the overall MueUer mau'ix has the same form as Eq. (19). Thus we can assume

m33(W1) -- m44(W1) = 1, m23(W1) = m24(W1) = m34(W1) -- 0, and the MueLler matrix

for the camera (in Eq. (20)) is known. Since the MueUer matrix for a sheet polarizer is

known, we are able to generate the Mueller matrix of the RADS-II for any direction of view

once the preferred transmission axis of the polarizer is known.

5. Calibration tests

To confirm the accuracy of the scalar (non-polarized) calibration procedures, an

experiment was performed in April 1994 in Key West, Florida in conjunction with the

Hand Held Contrast Reduction Meter (HHCRM). 21 Measurements of the sky radiance

distribution using RADS-II (without polarizers in place) were obtained at 3 wavelengths

common to both instruments, 558, 673, and 866 am. The measurement site was located at

the edge of Key West, Florida.

While the RADS-II measurement was obtained quickly (typical integration time was 1

second), the HHCRM measurement had to be taken successively one point at a time. Only
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principal plane anti almucantor data were taken using the HHCRM. The almttc_r

corresponds to directions with the same sun-zenith angle but varying azimuthal angles from

the sun. The principal plane is composed of directions in the plane containing the sun and

the zenith. The HHCRM measurement sequence took about three minutes for each

wavelength. In the RADS-II measurements an occulter was used to block the direct solar

radiation due to the dynamic range limitation of CCD sensor and to prevent flare from the

direct solar beam in the camera optics. Thus no data is available within 20 degrees of the

sun in the radiance image.

Figures 12 and 13 compare the RADS-H data with the HHCRM data for three channels

at wavelengths of 560 nm, 667 nm and 860 rim. It should be noted that the HHCRM has

an approximate pointing inaccuracy of 2 degrees. Figure 14 shows the relative difference

of the data in the principal plane for three channels. The difference is computed as:

% difference = 100 x • HHCRM - RADS

(HHCRM + RADS)I2 Eq. (21)

The Principal plane is a more difficult comparison because of pointing inaccuracies in

the HHCRM and because the rolloff calibration in the RADS system enters strongly into

the RADS data set.

For 560 and 670 nm all the dam shown have less than a 10 percent difference. The

agreement between RADS-II dataand HHCRM datafor860 nm ispoor, the differencecan

reach as big as 25% when the radiance value is small, with RADS-II data always higher.

The gain of the HHCRM is very sensitive to temperature at this wavelength; thus, the

HHCRM data may not be as accurate at this wavelength.

To test the polarization calibration method (separation of polarizer and camera MueIler

matrices)an experiment was pcfformcd tomeasure theMueller matrix elements directly

compare with those same elements olxained by matrix transformation (Eq. (20)). The

experimental setup is similar to the absolute calibration method in the way the camera was
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placedandlight sourcearranged.An additionaldevicepreparedlight beamsA, B and C as

in Eq. (17) and the camera viewed a reflectance plaque, illuminated by a 1000W lamp,

through this device. This device is basically a hollow cylinder painted black with a sheet

polarizer placed on a polarizer holder in front of the cylinder. The polarizer can be rotated

around the cylinder's axis precisely. The aperture of the polarizer allowed a 4 degree field

of view. While tests were done for all three wavelengths, Fig. 15 and 16 show the

comparisons between experimental results and matrix transformation results for 560 nm.

The transformed values differ from the directly measured values only by 1 to 2 %. The

development of the matrix wansformation technique for RADS-II polarimetric calibration

allows the MueUer matrix elements to be computed relatively quickly for the whole

hemisphere.

VI) Camera System Mueller Matrix Elements for the Whole Hemisphere

So far we have illustrated the polarimetric calibration procedures for the RADS-II Ca)

camera system. Since the Mueller matrix elements depend on the coordinate system, it is

necessary to define the coordinate system used.

Consider an x-y coordinate system on the CCD array with z pointing normal to the

array. All the Mueller matrix elements are represented in this x-y-z coordinate system for

the RADS-II optical system and in describing the radiative transfer process. For the optical

system of RADS-I_, each pixel on the array corresponds to a zenith and azimuth angle.

The I axis of the system is in the plane defined by the specific look direction and the optic

axis of the system. The zenith and azimuth angles determine the MueLler matrix elements

and therefore determine the polarization signature of the camera system. In the previous

discussions, we have shown that MueUer matrix of the camera does not depend on azimuth

angle (rotationally symmetric around the optic axis). Since we know the geometric

mapping of spatial direction to individual pixel on the array, it is possible to express Ihe

spatial MueUer matrix in an image format.
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The following figures (Figs. 17 - 18) are example contour plots of the Mueller matrix

element images for M12 and different configurations of polarizers, all generated by using

Eq. (20). The rotational symmetry is evident in those images. M12(W1) only slowly

varies with off-axis zenith angle. M120,V2) varies strongly with zenith angle as the

incoming l axis is oriented parallel and perpendicular to the transmission axis of the

polarizers orientation, shown in Fig. 17. M12(W3) (shown in Fig. 18) and M12(W4) are

sire/faronly rotatedat45 ° azimuthallyto follow the rotationof the polarizer. With these

(effectively) images of the MueUer matrix elements, the Mueller matrix of the camera

system is defined exactly. These images then provide a convenient way to store this

information and operate on data acquired in the field.

7) Conclusion

We have described the RADS-HP insu'un_nt and have shown through experiment that

the system performs well We expect that the absolute calibration of the system is acctaate

with 10% for most channels. Polarization measurements are accurate within approximately

2%. With the images resulting f_m the polarimetric calibration we can process sets of sky

radiance distribution data to obtain polarized spectral radiance distributions accurately and

quickly (<2 rain.) for all directions. Because all directions are taken simultaneously the

system is well adapted to operatein a changing environment or on a lessstableplatform,

such as a ship. In a companion paper we will present dam obtained with the instrument and

investigate aspects of the sky fight polarization.
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Figures

Fig. 1) Block diagramof RADS-IIP insmunent.

Fig 2) Dark counts (row) and (column). lllusu-atesthe non-uniformity of the dark

signalon thedetector. Integration time was 1 s, sensor temperature was -34.5 °C.

Fig 3) Dark counts as a function of integration time and sensor temperature. Illustrates

linear relation of clark counts with integration time and exponential relation with sensor

temperature.

Fig 4) Cross talk experiment which illustrates the suppression of counts from pixels in

the same row as a bright pixel.

Fig 5) Linearity calibration. Line is a power fit to the data and fits well over three order

of magnitude of light intensity (exponent is 1.04).

Fig 6) Typical rolloff curve found through calibration process.

Fig 7) Measmed principal transmittances for the dichroic polarizer used as a function of

wavelength.

Fig 8) Non-zero matrix elements for the reflected and transmitted fight due to interaction

with a glass (index of refraction = 1.5) surface.

Fig 9) Reduced mau'ix element M14 as a function of off-axis angle and polarization

filter position.

Fig 10) Reduced matrix element M12 as a function of off-axis angle and polarization

filter position.

Fig 11) Reduced matrix element M13 as a function of off-axis angle and polarization

filter position.

Fig 12) Almucanmr comparison of HHCRM and RADS.

Fig 13) Principal plane comparison of HHCRM and RADS.

Fig 14) Relative difference between HHCRM and RADS measurements in the principal

plane at each wavelength.

22



Fig 15) M12 directmeasunm_ntand matrix IranMcmnationmethod, illustrating how

well the matrix transformationmethod works to estimate the system Mueller matrix..

Measurementsperfom_ at560 nm.

Fig 16) M13 direct meastmmz_t and mea'ix transfomuttion method, illusuming how

well the matrix wansformafion method works to estimate the system Mueller matrix.

Measuren_nts perfommt at 560 nm.

Fig 17) MI2(W2)

Fig 18) M12(W3)
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ABSTRACT

Measurements of the skylight polarized radiance distribution were performed at

different measurement sites, atmospheric conditions, and three wavelengths using our

newly developed Stokes polarimeter (RADS-I_). Three Stokes parameters of skylight (I,

Q, U), the degree of polarization, and the plane of polarization are presented in image

format. The Arago point and neutral lines have been observed using RADS-IIP.

Qualitatively the dependence of the intensity and polarization data on wavelength, solar

zenith angle, and surface albedo is in agreement with the results from computations based

on a plane parallel Rayleigh atmospheric model.
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1. Introduction

Polarization is an intrinsic property of the light field. Solar radiation as a natural light

source is not polarized before it enters the atmosphere. The natural light field is polarized



throughscattering interactionsL2 with the atmospheric constituents, such as the permanent

gases (N.,, O,, etc.), gases with variable concentration (O3, SO:, etc.), and various solid

and liquid particles (aerosols, water, and ice crystals). The pattern of sky-light polarization 3

is related to the sun's position, the distribution of various components of the atmosphere,

and the under-lying surface properties. Since the discovery of sky-light polarization by

Arago in 1809, observations of sky-light polarization have been related to the studies of

atmospheric turbidity 4-_.6 and surface properties. 7 The recent development of the

Polarization Radiance Distribution Camera System s.9 provides a new method to observe the

sky-light polarization and can provide the spectral polarized radiance distribution over the

whole hemisphere quickly and accurately.

It has been generally recognized that the principal features of the brighmess and

polarization of the sunlit sky can be explained in terms of Rayleigh scattering by molecules

in the atmosphere? Modern radiative transfer theory investigating polarization1.:.10 has

been applied to studies on planetary atmospheres_l.12 as well as the earth-ocean

system. _3"_''_5 Understanding the intensity and polarization of light in the atmosphere is

also important in atmospheric correction of the remotely sensed data. The atmospheric

correction algorithm developed for the Coastal-Zone Color Scanner (CZCS) imagery t6._7 is

most easily understood by f'u'st considering only single scattering, including contributions

arising from Rayleigh scattering and aerosol scattering. The analysis of multiple scattering

effects was based on scalar radiative transfer computations in model atmospheres. _s Recent

advancements _9''° solved the exact (vector) radiative transfer equation to compute the scalar

radiance. Neglecting the polarization in radiance calculations in an atmosphere-ocean

system will introduce errors as large as 30%. 2t Measurements of the total sky polarized

radiance distribution can be used to test the validity of vector radiative transfer models.

Through inversion techniques it can also be used in the determination of physical and

optical properties such as the absorption and scattering phase function of aerosols :2 which
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can not be done directly because of the difficulty in

function _ and the single-scattering albedo.-'"
measuring the scattering phase

2. Background

Although scattering in the real atmosphere is more complicated than Rayleigh

scattering, knowledge of the intensity and polarization of light in a plane parallel Rayleigh

atmosphere is very important for discussion of the skylight. While quantitatively different,

radiance distributions resulting from Rayleigh and Rayleigh-aerosol conditions exhibit

similar variation with sun elevation, atmospheric turbidity and other parameters.3

A. Intensity of Skylight in a Model Atmosphere

To illustrate the dependence of the intensity of light in a model atmosphere on the

surface properties, computations using Gordon's successive order approximation_9

(including polarization) in a Rayleigh atmosphere with a Fresnel reflecting surface was

Performed at a sun zenith angle of 53. I degrees and at optical depths of 0.05, and 0.25.

Light intensities on the principle plane are shown in Fig. 1 and compared with results from

Coulson et al. _ for the same atmosphere with a lambertian reflecting surface. The surface

reflectances, R, are displayed on the graph. As can be seen, a Fresnel surface will increase

the skylight intensity only slightly above a totally absorbing surface (R=0). A lambertian

surface reflectance of 0.25 affects the radiance distribution much more, as will be seen in

our exPerimental data.

In Fig. 1, the radiance has been normalized to the solar constant. It can be seen that the

normalized radiance increases as the reflectance increases due to light being reflected from

the surface. The normalized radiance also increases as the optical thickness increases. At

this point it is worth noting that the separation between lines with different surface

reflectances becomes larger as the optical thickness increases.



Sincethe skylight radiance for a clear atmosphere is dependent on both atmospheric

turbidity and surface albedo, it is useful to look at the skylight measurements that have been

made at various geographic locations and times. We have chosen cases in which cloud

interference was absent or minimum.

B. Polarization of Skylight in a Model Atmosphere

The principal interest in measurements of skylight polarization is its sensitivity to dust,

haze, and pollution in the atmosphere. :5.26 The maximum degree of polarization is

diminished by the effects of aerosol scattering, and at the same time the neutral points

(Q=0,U--0, clef'met below) of the polarization field are shifted from their normal positions.

To illustrate how the degree of polarization and its maximum varies with surface properties

and optical thickness, we will f'ust look at computational results of a Rayleigh atmosphere

using the plane parallel modelJ These changes will be investigated with experimental data

in next section.

Figure 2 illustrates the degree of polarization in the principal plane (azimuth angle 180

degrees) with a sun zenith angle of 53.1 degrees. The data were taken from tables

computed by Coulson et al.. _ As can be seen, the degree of polarization has a strong

dependence on surface properties and optical thickness. As the surface reflectance or

optical thickness increases, the degree of polarization decreases accordingly. The Fresnel

reflecting surface case was not shown, as the degree of polarization over a Fresnel

reflecting surface is only slightly larger than that over a totally absorbing surface.

A convenient representation of the polarization of a light beam is the Stokes vector. 2

The four components of this vector, labeled I, Q, U, and V, are defined in terms of the

electric field, s.9 Simply these may be defined as:

I=I,+I_

Q=I I -IT

U = [45- I135
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V=l_-I,c

where I_ is the intensity of light polarized in a reference plane, IT is the intensity of light

polarized perpendicular to this reference planc, I4_ and I_35 is the intensity of light polarized

in a plane 45 and 135 degrees to the reference plane, and f'mally _ and I_¢are the right and

left circularly polarized intensities. Other parameters, used to describe the polarized light

field, will be defined. The linear degree of polarization is def'med as 4(LY +U 2)/I. The

importance of the Stokes parameters Q and U in the atmosphere is that they define the

polarization state of the atmosphere.

The neutral points are points where the degree of polarization is zero. Neutral points

are then characterized by the double requirement Q=-0 and U =0. For a lambertian surface

these requirements are only met simultaneously at points on the principal plane. The Arago

point is located above the anti-solar point. Two other points, the Babinet and Brewster

points are located above and below the sun. Since the RADS-IIP instrument can not

measure the part of the sky in which the Babinet and Brewster points occur due to an

occulter, we will restrict our discussions to the Arago point. Neutral points can be outside

the principal plane over a still water surface duc to Fresnel reflections from the air-water

interface. :7_8 Neutral points can also depart from their normal observed positions due to

light scattering by dust, haze, and other aerosols :5, which suggest that neutral point

positions are sensitive indicators of atmospheric turbidity?

The lines which separate the regions of positive Q from the regions of negative Q arc

called neutral lines. Another parameter which can be deduced from the polarization field is

the angle of the plane of polarization X. Z, defined by U = Q tan(2x) ' is the angle between

the plane of polarization and the vertical plane at the relevant azimuth. By symmetry, X

must be :t:90 degrees on the principal plane, depending on whether Q is positive or
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negative, in either case U = 0. Also, when X is zero, U is zero. Neutral lines, lines of

U=0, and X are particularly important to the examination of radiative transfer models.

3. Experiment and Data

A. Method of Measurement

The measurements of the polarization radiance distribution were all made with the

Polarization Radiance Distribution Camera System (RADS-IIp) s.9 at the following

wavelengths: 439, 560, 667 rim. In normal operation, the analyzer is at each of three

polarizer positions and an image obtained. The resulting data images, plus a dark count

image taken with the shutter closed, constitute the basic data of one measurement. The

overall time period for one complete measurement is 2 minutes. After correction for dark

counts, the three data images are analyzed, and values of the Stokes vectors are computed

and saved in image format. The degree of polarization and angle of the plane of

polarization can also be calculated and displayed in image format. Measurement errors

arise from errors in the recorded light intensity and the calibrated MueUer matrix elements.

The uncertainties in recorded light intensities are due to (1) measurements taken in a series

that extends about 1.5 minutes, ideally we should take measurements at the same time, and

(2) unavoidable stray light and noise in the optical and electronic system. Normally

skylight does not change significantly in 1.5 minutes especially when the sun elevation is

high. Stray light and noise has been accounted for to the best of our abilities and as shown

in comparisons with other instrument. _ An analytical estimate shows the error in

determination of the MueUer matrix elements can reach a maximum of 2%. To minimize

the blooming effect caused by the direct solar radiation and the limited dynamic range of the

system, a sun occulter has been adopted in our system to block the direct solar radiation.
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This occulter also blocks a portion of the sky, as a result, there is a portion of the data not

available on all data images on the sun's half of the atmosphere.

B. Description of Measurement Sites

The RADS-ILP polarimeter was deployed on top of JLK physics building on the main

campus of University of Miami on Feb. 12, 1996 and on the top of the Science and

Administration building (SLAB) at Rosenstiel School of Marine and Atmospheric Sciences

(RSMAS) on Feb. 5, 1996 (at approximately 2..5° 43" N and 80 ° 16' W). The aerosol

optical depths (AOD) for these days are shown in Fig. 3. The AOD measurements were

made with a shadowband radiometer.:9 It can be seen that AOD varies with wavelength
and time.

Feb. 12 was a very clear day and the surrounding area corresponds to a typical urban

area. Buildings, vegetation, and surfaces of varied reflectances surround the site.

Measurements taken on Feb. 5 have different features (Fig. 4), southeast of the site is

water and northwest is land (including buildings, vegetation, and sand). On that day,

there were clouds early in the morning and late in the afternoon, clear sky conditions

occurred between 10:00 AM to 2:00 PM.

C. Radiance Distribution of Skylight

The data taken on Feb. 12 are shown t_st. In these cases, measurements of the sky

radiance distribution were taken at 3 wavelengths (439, 560 and 667 nm) and typical data

are shown in contour plots. Ordy 439 nm and 667 nm are shown for brevity. Figures 5a,

5b, and 5c are contour plots of radiance distribution at 439 nm (solar zenith angle 45.3o),

667 nm (solar zenith angle 47.2°), and 439 nm (solar zenith angle 77 °) respectively. In

these images the center is the zenith direction, the zenith angle is directly proportional to

radius from the center. The bold circular lines are at 30 and 60 degree zenith angles. The

units are 10-: law / (nm cm _ sr). On the solar half of the hemisphere the rectangular area

on the right of the image is the sun occulter, used to block the direct solar radiation, s In



general,for all threewavelengths, the minimum radiances appear on the antisolar half of

the hemisphere. As the wavelength increases, the absolute values of the minimum region

decreases. This reflects the wavelength dependence of Rayleigh scattering and explains the

blue sky. It is important to note that the symmetry to the sun's principal plane exists in

these images due to being over an approximately uniform reflectance background. One can

also note the increase in radiance at the horizon clue to the increased effective atmospheric

path length at the horizon. As the sun-zenith angle increases, the absolute radiances

decrease at all wavelength bands and the minimum regions shift with the sun.

Measurements were also performed on Feb. 5 on top of the Science and Administration

(SLAB) building at RSMAS to investigate the effect of surface inhomogenities on the

measurement. The major features are similar to the Feb. 12 data set. The area southeast of

the measurement site at RSMAS is water and northwest is land. Feb. 5 was immediately

after a cold front passed through Miami and the optical depths were higher than those on

Feb. 12. It was cloudy early in the morning and late in the afternoon. Skylight intensity is

significantly higher due to higher optical depth. Figure 6a is a contour plot of light

intensity at 439 nm (solar zenith angle 46.3 °) and figure 6b is at 667 nm (solar zenith angle

44.7°). On both graphs, the minimum intensity regions are shifted toward the direction

over the water and thus destroy the symmetry to the principal plane. This shift from the

principal plane decreases as the wavelength increases. The shift can be explained since a

Fresnel reflecting surface (water) only increases the skylight intensity slightly but a surface

with R=0.25 (approximates land) has a large effect (Fig. l ).

D. Stokes Parameter Q and Neutral Lines

Figures 7a -7c show the contour plots of the Stokes parameter Q for the images shown

in Figs. 5a-5c. These demonstrate how Q changes with wavelength and sun angle. The

numbers shown on the graphs are f'u'st normalized to the intensity and multiplied by 1000.

They all show good symmetry to the principal plane as expected from a plane parallel



model and the uniform surface. The deviation from this symmetry mainly appears on the

sun's half of the atmosphere. Neutral lines (designated with number 0) are formed clearly

on the hemisphere opposite to the sun. Parts of neutral lines are also formed on sun's haft

of the atmosphere but large parts of these lines have been blocked due to the sun occulter.

The minimum Q (negative number) appears on the principal plane and 90 degrees from the

solar position. Tables 1 and 2 list the minimum Q's on the principal plane. Q is negative

inside the neutral lines but positive outside and the maximum contours are symmetric to the

principal plane and expand with the increasing solar zenith angle. As the solar zenith angle

increases, neutral lines shrink significantly but still keep the similar shape and form a

closed line. The contours crossing the principal plane seem to be dragged towards the

zenith and their shapes change significantly.

E. Stokes Parameter U and Lines of U=0

Figures 8a - 8c show the contour plots of the Stokes parameter U for the images shown

in Figs. 5a-5c. These demonstrate the change in U with wavelength and sun angle. The

numbers shown on the graphs are f'u-st normalized to the intensity and multiplied by 1000.

The Stokes Parameter U is anti-symmetric to the principal plane, U--0 lines only appear on

the principal plane and on the sun's half of the atmosphere. This is in agreement with the

computation results using a plane parallel Rayleigh atmosphere model. 3 In the contour

plots shown, since the sky in the vicinity of the sun has been blocked, a closed U=0 lines

are not shown but the parts of lines shown suggest this trend. Again the deviation from

anti-symmetry seems to occur on sun's side of the atmosphere. The maximum regions

(both negative and positive) occur on the half of the atmosphere opposite the sun. As the

solar zenith angle increases, these contours displace towards the zenith and their shapes are

deformed. As the wavelength increases, for constant solar zenith angle, the maximum

region expands, which implies larger degrees of polarization at longer wavelength. Table 3

lists the maximum U's. Notice that when the sun is low, the U=0 line on the principal
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planehasdeflectedfrom a straight line and bends close to the horizon. This phenomenon

is not seen in a Rayleigh scattering plane parallel model with a uniform surface. A possible

explanation could be that water is southeast of the measurement site. As the sun was setting

(west, azimuth angle around 247 degrees from true north for graphs shown) the U=0 lines

shift towards the part of the atmosphere where the polarization is influenced by reflection

from water. When the sun was high, the water body was under the sun's half of the

atmosphere and had a negligible effect.

F. Degree of Polarization and Neutral Points

Figures 9a - 9c show the contour plots of the degree of polarization, p, for the images

shown in Figs. 5a-5c. These demonstrate how P changes with wavelength and sun angle.

The numbers shown on the graphs have been normalized to the radiances and then

multiplied by a factor of 1000. The degree of polarization shows very good symmetry to

the principal plane. Starting from the position of the sun (figure 9), the degree of

polarization increases as the primary scattering angle increases. The maximum values

occur in the region where the primary scattering angle is 90 degrees from the sun, this is in

agreement with our earLier discussion using a plane parallel model. Following the

maximum region, the degree of polarization decreases as scattering angle increases. The

maximum degree of polarization is larger for longer wavelength. Since the Rayleigh

optical thickness is smaller for longer wavelengths, light in the longer wavelengths suffers

less multiple scattering thus a larger maximum degree of polarization.

Tables 4 and 5 lists the maximum P on the principal plane. As in the real atmosphere,

light interacts with aerosol particles as well as molecules, the degree of polarization deviates

from the predictions of a simple Rayleigh atmosphere model. As the solar zenith angle

increases, while the maximum degree of polarization moves with the sun to maintain a

scattering angle of 90 degrees, new contours are formed around a point on the principal

plane at which a minimum value in degree of polarization is shown. This point is the
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Arago point described later. As the solar zenith angle increases, the degree of polarization

also increases for all three wavelengths in accord with the theoretical expectations._,

Another feature of the contour plot at lower sun elevation is the deviation from symmetry,

this could be caused by light reflected by the water and then scattered into the measurement

site as compared with Light reflected by land, as discussed earlier.

Figure l0 plots all Arago points observed at various sun angles and at three wavelength

bands. The position of the neutral points are measured in angular distance from the

antisolar point. It can be seen that this angular distance increases as the solar elevation

increases. The observed neutral points are at larger angles than the positions computed

using a Rayleigh atmosphere with a totally absorbing surface. In Fig. 10, the total optical

depths are Listed for each channel. The difference between the observed value and the

computed value is clue to light scattering by aerosols and surface reflections.

G. Plane of Polarization

Figures 11 a -11 c show the contour plots of the angle of plane of polarization, X, for

the images shown in Figs. 5a-5c. The numbers shown on the graphs have been multiplied

by a factor of 100. These contour plots can be best understood when compared with the

corresponding Q and U plots shown. At First let us point out that the heavy lines on the

principal plane are an artifact of the contour program. X is antisymmetric to the principal

plane thus on each side of the principal plane X approaches either 90 degrees or -90

degrees. The contour program sees an abrupt change of 180 degrees when crossing the

principal plane and adds many lines close to the principal plane. X is +45 degrees at the

neutral fines and zero at fines of U=0 except in the principal plane. As the wavelength

changes, X changes according to the changes of Q and U. As the sun's elevation

decreases, the contour on the half of the hemisphere opposite the sun shrinks significantly
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while the contour on the sun's side expands.

appears and some contours will go into the neutral point.

H. Degree of Polarization Influenced by Measurement Site and Aerosols

As mentioned previously, the measurement site at RSMAS is special because the

southeast is water but the northwest is land (Fig. 4). This results in a change in the

skylight distribution (Figs. 6a, 6b). To illustrate how these factors affect the polarization,

contour plots of the degree of polarization have been chosen at 439 (Fig. 12a), and 667 nm

(Fig. 12b). Though the region where the maximum degree of polarization occurs is 90

degrees from the sun in general, the maximum in the region most likely affected by water

has higher values than the region most likely affected by land. This deviation from

symmetry is because the degree of polarization over a Fresnel reflecting surface is much

higher than the degree of polarization over a Lambertian reflecting surface. As the

wavelength increases, the degree of polarization increases also. Comparing Figs. 9a and

9b with Figs. 12a and 12b, the degree of polarization is much lower on Feb. 5 (Figs. 12a

and 12b) than on Feb. 12 (Figs. 9a and 9b) due to the higher aerosol optical thickness.

Light scattered by aerosols is not as highly polarized as in the case of Rayleigh mattering

and adding aerosols will result in a higher chance of multiple scattering. Table 6 lists the

maximum degree of polarization (P).

When the sun is low, the Arago point

4. Conclusions

Although various aspects of the intensity and polarization in the sunlit atmosphere have

been studied in the past, rapid measurements of the absolute skylight polarization radiance

distribution over the whole hemisphere have not been possible previously. In this paper,

measurements of skylight polarized radiance distribution were performed at different

measurement sites, different atmospheric conditions, and three different wavelengths.
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Qualitatively the radiance and polarization data are in agreement with the results from

computations based on a plane paraUel Rayleigh atmosphere model.

The ability of RADS-IIp to give polarization radiance distributions has great application

potential in studies of atmospheric aerosols as well as radiative transfer problems in the

earth-ocean system due to the fact that data can be taken in a short time thus changes in the

atmosphere during measurement can be avoided. The neutral point (Arago point) appearing

in the data suggests the potential to detect other neutral points if a smaller sun occulter is

adopted. Since anomalous neutral point positions 28have been predicted to occur over a still

water surface, RADS-I/P can also be used to detect this effect. In the future, data will be

compared with computed data based on realistic atmospheric models (including aerosols

and surfaces) and used to validate the models and investigate the optical properties of
aerosols.
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Figure Captions

Figure 1. Normalized radiance on the principal plane with an azimuth angle of _=180 o

and solar zenith angle of 53. I °. Data are shown for two optical depths, 0.05 and 0.25.

Data with Lambertian surface are from Coulson et al._

Figure 2. Degree of polarization at various optical depths, from Coulson et al. _t

Figure 3. Aerosol optical depth (AOD) as a function of time on Feb. 5 and Feb. 12,
1996.

Figure 4. Illustration of the measurement site at RSMAS, used on Feb. 5, 1996.

Figure 5. Contour plots of skylight radiance. The data shown were taken on top of the

.ILK physics building at University of Miami on Feb. 12, 1996. The origin of the

coordinate shown corresponds to the zenith and the inner and outer circles to 30 ° and 60"

zenith angles respectively. (a) Measurement wavelength is 439 nm, solar zenith angle is

45.3 degrees, AOD(410 nm) is 0.17. (b) Measurement wavelength is 667 nm, solar

zenith angle is 47.2 degrees, and AOD(410 nm) is 0.20. (c) Measurement wavelength is

439 nm, solar zenith angle is 77 degrees, and AOD(410 rim) is 0.14.

Figure 6. Contour plots of skylight radiance. The data shown were taken on top of the

Science/Administration building at RSMAS on Feb. 5, 1996. (a) Measurement wavelength

is 439 rim, solar zenith angle is 46.3 degrees, and AOD(410 nm) is 0.35. (b)

Measurement wavelength is 667 rim, solar zenith angle is 44.7 degrees, and the AOD(410

nm) is 0.30.

Figure 7. Contour plots of the Stokes parameter Q. The measurement descriptions for

a, b, and c correspond to 5a, 5b, and 5c respectively.

Figure 8. Contour plot of the Stokes parameter U. The measurement descriptions for

a, b, and c correspond to 5a, 5b, and 5c respectively.

Figure 9. Contour plots of the degree of polarization.. The measurement descriptions

for a, b, and c correspond to 5a. 5b, and 5c respectively.
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Figure I0.The observed angulardistanceof theAsago pointfrom the antisolarpoint

versus solarelevation.Data obtained on Feb. 12, 1996.

Figure II.Contour plotsof the plane of polarization.The measurement descriptions

for a,b, and c correspond to5a, 5b, and 5c respectively.

Figure 12.Contour plotsof thedegree of polarization.The measurement descriptions

fora and b correspond to6a and 6b, respect/rely.
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Table I The minimum Q/I (xl000) on the principal plane as a function of solar-zenithangle, 0o, at 439 nm.

Oo 40 ° 42.5 ° 44.50 45.30 52.6 ° 64.8 ° 69.3 ° 73.9 ° 77.1 °

Q/I 406 438 467 535 546 564 570 569 592

Table 2 The minimum Q/I (xl000) on the principal plane.

solar zenith Angle(0o) Q/I for 439 nm Q/I for 560 nm Q/I for 667 nm

45° -535 -578 -584

75 °
-592 --646 --638

Table 3 List of the maximum U/I (xl000).

solar zenith angle (Oo) U/I for 439 nm U/I for 560 nm U/I for 667 nm

45° 540 594 610

75 °
580 640 630
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Table 4 The maximum p (xl000) on the principal plane as a function of solar -zenithangle, 0o, at 560 rim.

8. 400 41-8° 43-90 46.4 ° 53.5" 66 ° 70.1 ° 74.5 ° 77 °

P 494 468 460 578 624 630 647 633 646

Table 5 List of the maximum p (xl000) on the principal plane.

solar zenith angle (0o) P for 439 nm P for 560 nm P for 667 nm

44 °

535 578 584

75° 592 646 638

Table 6 Illustration of the maximum degree of polarization (8°-_.450). pp represents
principal plane, MP represents the maximum p in the image.

Date, region AOD at 410 nm P at 439 nm P at 560 nm P at 667 nm

Feb. 12, PP 0.20 535 578 584

Feb. 5, PP 0.35 301 355 420

Feb. 5, MP 0.35 400 456 510
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Abstract

Measurements of the spectral scattering and attenuation properties of coccolithophores (E.

hlL.x!g_; clone 88E) and their associated coccoliths were made for three growth phases as

well as for acidified cultures. These measurements allow a clean separation and

determination of the optical effects of the various components. The specific beam

attenuation coefficients, m2(particle) -1, were found to be 5.17E-12, 7.43E-10, and 7.88E-

11 for coccoliths, plated cells and naked ceils respectively at 440 nm. The spectral

dependence of these factors followed a power law dependence, with a wavelength

exponent of-3.7, -0.28, and -0.38 for the coccoliths, plated cells and naked ceils

respectively. The volume scattering functions for all appeared similar, however the specific

backscattering coefficients (m_(particle) "1) at 456 nm were 1.37E-13, 6.72E-12, and 9.90E-

13 for coccoliths, plated cells, and naked cells, respectively. The wavelength dependence

of this parameter also followed a power law and was -1.4 , -1.2 and -1.0 for the

coccoliths, plated cells and naked cells. Overall these results show that optical properties of



acoccolithophorebloomaresensitiveto thecoccolith/ceU ratio and can vary between and
within blooms.

Introduction

The coccolithophore _ _ (Lohm.) Hay and Moler, strain 88E, is a

ubiquitous species in the worlds oceans, common in both bloom and nonbloom conditions

(Green and Leadbeater, 1994). It has a major effect on carbon flux in the oceanic system

and, through effects on the optical properties of the water column, on remote sensing. E.

produces calcite coccoliths which cover the cell, increasing its effective index of

refraction changing it's scattering properties. It can also release these coccoliths, adding

free coccoliths to the water column and, growing more, continue to release these, until the

optical effects of free coccoliths in the water column become significant. Finally, as with

other phytoplankton, the ceils themselves, quite apart from coccoliths, will add to the water

column attenuation and scattering. To determine the relative optical effect of free coccoliths

and plated or naked ceils, these optical properties must be determined separately in some

manner. In field experiments, optical effects of calcite coccoliths have been isolated by

bubbling with CO 2 or adding acid (Ki/patrick et al, 1994). However in this process both

coccoliths attached to cells and detached in the medium are dissolved, thus separating

components is difficult. Laboratory cultures of E. _ can be grown which allow

easier manipulation, cleaner interpretation, and separation of the optical signatures of the

various components of this species. The measurements reported in this paper are the first

separate determinations of the optical properties of spectral backscattering, b_, and spectral

beam attenuation, c, for coccoliths, plated cells, and naked cells.

Methods

Experimental Design - In this experiment, volume scattering and attenuation were

measured for cultures of E. _ in three distinct growth phases. We also measured

these optical parameters in acidified samples of the same cultures, which allowed resolution

of the scattering and attenuation properties of pure suspensions of naked (unplated) cells.



In thef'u'stgrowth phase,cells were in stationarygrowth (henceforthreferred to as

"stationaryphase"ceils). In thisphasethecells werepredominately(95%) nakedand in

thesamplealongwith freecoccoliths. When this sampleis acidifiedthe free coccoliths

from thesamplearedissolved.Manystudieshavebeenperformedwhich haveshown that

opticalpropertiessuchasbb of the cells are not changed during the acidification process

(Balch et al, 1992, 1996a, 1996b: Balch and Ki.lpatrick, 1996). As such, measurement of

attenuation or scattering before and after acidification allowed the distinct determination of

the optical signature of unplated ceils combined with free coccoliths, unplated cells

separately, and by difference, free coccoliths.

In the second experiment, a culture was used which was in log phase growth

(henceforth referred to as "log"). In this case, most of the ceils were plated (80%) and

there were also free coccoliths. Optical measurement of the total sample then yielded a

combination of plated cells, free coccoliths, and a few naked ceils. The acidified sample

allowed measurement of the optical properties of unplated ceils. Hence, the optical

properties of particle types could be resolved with these two samples in their two phases

(log and stationary, acidified and non-acidified).

A third independent sample, an older culture (where 50% of the cells had lost their

coccoliths) was measured (referred to as "senescent"). In this case only scattering

measurements were performed. In this sample the values derived from the other two

growth phases were combined with cell and coccolith count information to fired an estimate

of the relevant optical properties, and these modeled values compared with the values

obtained by direct measurement.

More details on the measurement procedures follows.

Cultures - Three cultures of E._ (clone 88e) were grown in 10 liters of K media

(Keller et al. 1987). Cultures were grown in an incubator at 19 ° C and a 12:12 light:dark

cycle at a PAR (photosynthetically available radiation) illumination of 51 l.tE m _ s _. Cell



and coccolithcountswere madedaily to follow the growth of theculture and extentof

platedness.Aliquots of theculturewereremovedfor opticalmeasurementswhen thecells

were in log, stationary, and senescentgrowth phases. Cell sizes (diameters)were

previously measuredto be: 6.4 I.tm for cells with coccoliths,5.2 grn for cells without

coccoliths. The freecoccolithswereapproximately3 lain in lengthand 2.4 _tmin width,

thesurfaceareawas13_tm2(Fritz, 1997). All measurementswere performedat thesame

timeeachday to avoidpossibleproblemswith dielvariability.

Microscopecounts - Cells and free coccolithswere countedin a PalmerMaloney

chamberusing an OlympusBH-2 epi-fluorescencemicroscopewith polarizationoptics.

Cellswereexaminedunderbothpolarizationandepi-fluorescenceto determinetheratio of

platedand nakedcells in culture. The free coccoliths in solution were counted under

polarizationonly. Microscopicparticlecountsweremadedaily onthe originalculturesand

duringtheopticalexperimentsaftereachadditionof cultureto theexperimentaltank.

Tank preparation- A blackened210 liter drum was filled with fresh seawatertaken

from Bear Cut, off the RSMAS, Univ. of Miami dock and f'fltered overnight by

recirculatingthewaterthrougha0.2_.mporesizeGelmanpleatedfilter cartridgeattachedto

aMini-Giant submersiblepump. Thef'fltercartridgewasremovedbeforeeachexperiment

andtheMini-Giant remainedin thedrumtore-circulatetheseawaterduringmeasurements.

The temperaturein thedrumwasmaintainedat 19°C by a coolingcoil madefrom tygon

tubingwhich wasattachedtoare-circulatingwaterbathchiller.

Opticalmeasurements- Spectralattenuationof the stationaryand log phasecultures

were made with the Vislab Spectral Transmissometer (VLST). (Petzold and Austin 1968)

These measurements were done at 5 wavelengths: 440 nm, 490 nm, 520 nm, 550 nm, and

670 rim. Light scattering measurements were done with the General Angle Scattering

Meter (GASM) (Petzold 1972) at 6 wavelengths: 440, 490, 520, 550, 610, and 670 nm.
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The volume scattering function (VSF) was measured with this instrument at every degree

between 10 and 170 degrees from the incident beam. Light scattering was also measured

using a Brice Phoenix (BP) scattering photometer at three angles, 45, 90 and 135 degrees,

and at two wavelengths, 436 nm and 546 nm. The VLST and GASM are designed to be

in-situ devices, hence they require a large enough sample to immerse the instrument. This

immersion was done by placing the instruments in the tank of 0.2 gtm faltered seawater and

sequentially adding culture aliquots. The BP measures a much smaller sample (beam size =

4 x 15 mm) which allowed much more sample manipulation (e.g. acidification).

The procedure followed for each instrument was as follows. GASM and VLST were

placed in the tank fflled with filtered seawater. The spectral attenuation, c, and VSF, of the

background seawater were measured, and a sample removed for the BP measurement. The

BP measured the VSF for this sample, and the sample was acidified by adding 6.4 ml of

1.2% glacial acetic acid per liter seawater to the cuvette and the VSF measured again.

There was no significant difference between the measured VSF for the acidified and non-

acidified cases in this background seawater sample. At this point an aliquot of the culture

sample was added to the water, and the barrel was stirred with an electric pump until the

transmissometer readings stabilized. A subsample of this container was removed for

measurement by the BP and particle counts, then GASM and VLST measurements were

performed. Following the BP measurement the aliquot was acidified and the VSF

remeasured. E. _ culture was added to the tank to achieve three concentrations and

measurements performed at each stage. The maximum optical pathlength (c* geometric

pathlength) measured was approximately 0.2, thus multiple scattering effects were not

significant. After the last culture addition the entire tank was acidified to dissolve all calcite

coccoliths by adding 6.4 ml of 1.2% glacial acetic acid per liter seawater bringing the pH to

5.5, whereupon measurements were performed both in the drum and with the BP. At this

point the BP sample was acidified again to c0nfLrm that the coccoliths had been totally

dissolved in the f'trst case. This procedure was followed for each of the three cultures,
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however for thesenescentcasetheVLST was malfunctioning so no spectral attenuation

measurements were available.

The VLST directly measures the spectral transmission over a 1 meter path, T(,a,), which

is converted to the spectral beam attenuation, c(Z), by the equation:

cOO = -tn(TO0) .

No correction was made for the f'mite (about 1.5 degree) acceptance angle of the

transmissometer. This effect is estimated to cause a 10% underestimate of c (Voss and

Austin, 1993).

The backscattering coefficient, bb, was calculated with the measurements of the VSF in

two ways. Since the GASM measurements only extend to 170 degrees, the data was

extrapolated to 180 degrees by assuming VSF(O) for 170 to 180 degrees is constant. The

data was then integrated directly to obtain b b through the equation:

180"

bb = 2_r f VSF(O)sin(O)dO
90 °

While more sophisticated extrapolation methods might be hypothesized, because the solid

angle between 170 ° and 180 ° is such a small part of the total hemisphere and VSF(O) is

approximately flat in this region, the portion ofbo form 170 to 180 degrees only contains

1% of the total b b. Thus this is probably only a +-1% error in the calculation ofb_.

For the BP, data was only obtained at three angles (45, 90, and 135). To interpolate

and extrapolate these measurements to obtain the VSF from 90-180 degrees, these data

were used to fit the equation (Beardsley and Zaneveld, 1969; Gordon, 1976):

VSF(O) = f

(1 -- gcos(0))4(1 + h COS(0)) 4 °
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Oncethecoefficientsfor thisequation_ g, and h) were determined, the equation was

numerically integrated to obtain b b. A test of this method was performed in which the

GASM data was directly integrated to obtain b b and the values of the VSF at the three

angles used to derive a b b through the analytical fit. This was done for all the GASM

measurements and the results can be seen in Figure 1. As can be seen this technique works

well (the standard deviation was 6%), indicating that the b b derived from the fitted analytic
equation is accurate.

Results

Spectral beam attenuation - As previously introduced, we made two types of

measurements for beam attenuation, the stationary cell case and the log case which

provided three independent variables, concentrations of 1) naked cells, 2) plated cells, and

3) free coccoliths. The dependent variable is the measured beam attenuation. We also

examined three concentrations of each growth phase (stationary and log), and the acidified

sample. In total, for the beam attenuation, we have 8 measurements of beam attenuation,

with associated cell and coccolith counts. A linear, multivariable, least squares analysis

(Natrella, 1963) was performed, fitting the experimentally measured beam attenuation data

to the equation:

c(_.) = x0_) X + y(_,) y + z(_,) Z,

where X was the concentration of naked cells (cell m3), y was the concentration of plated

ceils (ceLl m-3), and Z was the concentration of coccoliths (coccolith m3). The Parameters

determined in the fit were x(X), y(_.), and z (_,), the beam attenuation per naked cell, plated

cell, and coccolith concentrations, respectively. In this way the relative contribution to the

beam attenuation for each component could be determined. The resulting specific beam

attenuation coefficients, and their standard deviations, for the different wavelengths are

shown in Table I and in Figure 2. The error for the free coccoliths is fairly large, mainly

because we had few samples (relative to the bb measurements) to work with. These still are



informativeastheygive aqualitativeview of the relative magnitude of these coefficients. A

typical result of how well the above equation fits the data is shown in Figure 3. This is the

experimentally measured c(440 nm) vs the modeled c values, using the empirically

determined coefficients from the above equation. The average absolute error in the

predicted c values was 25%. In al/cases the worst prediction was for the acidified sample

for the log case, when this point is excluded the average absolute error is less than 20%.

The cell coefficients can be compared to the measurements of Bricaud and Morel (1986).

By using their Table 1-17the specific beam attenuation coefficient of E. huxleyi can be

derived as 1.94E-10 (cells m 2) (435 nm) and 1.72E-10 (cells m 2) (550 nm). There is no

information in this paper as to the state of the coccolithophores, however these values fall

between our values for naked and plated cells.

The f'u'st important point to note in this data is the wavelength dependence of the

factors. Each of these factors can be fit to a power law wavelength dependence (_y). The

plated cell and naked cell factors are spectrally flat, with wavelength exponents of -0.3 and

-0.4 respectively. This agrees well with the value derived from the Bricaud and Morel

(1986) measurements (-0.5). The coccolith specific beam attenuation coefficients are

strongly wavelength dependent (a wavelength exponent of -3.7), but this is strongly

influenced by the 670 nm data point. Without this point the wavelength exponent is -2.4,

still strong but significantly less than -3.7. Secondly it is important to note the relative

magnitude of the factors, increasing by roughly an order of magnitude between the

coccolith, naked cell and plated cell. The specific beam attenuation coefficient for the plated

cells were more than 100 times greater than free coccoliths, this factor was greater than the

number of coccoliths plating each cell (~ 30; Fig. 3).

Spectal light scattering - The normalized VSF for all of the samples showed no

significant spectral dependence (as reported for field measurements during E.

blooms, Balch et al 1991). The normalized VSF at each wavelength is shown in Figure 4.

As can be seen there was also no marked difference in the normalized VSF between the



varioussamples.Becausewehavenomeasureof the VSF between 0 and 10 degrees it is

not possible to comment on the total scattering coefficient, b. However bb, the

backscattering coefficient is perhaps a more important parameter because of it's impact on

remote sensing reflectance and diffuse attenuation.

As mentioned above we can derive b b from both the GASM and BP measurements.

The bo measured for each sample, for the blue (440 nm for GASM, 436 for BP), and green

(550 nm for GASM and 546 for BP) are shown in Figure 5. As can be seen from these

figures, for the most part, the measurements with BP and with GASM agree well, but there

are some deviations. Each insa'ument has specific advantages. GASM allows

measurement of much more of the VSF (10-170 degrees) and more wavelengths (6), but

BP allows more manipulation of the sample. This is primarily because GASM requires

immersion, thus we did not logistically have enough culture to repeatedly bring the 210 liter

tank to a given cell and coccolith concentration, acidify and then start again. The BP

allowed us to acidify each sample, thus gaining more information in each case.

As with the spectral c case, we performed a multiple linear fit to bb which isolated the

specific b b coefficients (bb*) for coccolith, plated cells and naked cells. Because b b is an

additive property, the linear, multivariable, least squares fit took the following form:

bb(_) = x(_)X + y(_,) Y + z(,;t,) Z,

where once again X, Y, and Z were the coccolith, plated cell, and naked cell

concentrations. Hence x(_), y(_) and z(_,) represented the bb* for coccoliths, plated ceils,

and naked cells. Table 2 shows the BP derived coefficients and the GASM derived

coefficients. Figure 6 shows the same data graphically. Note the 520 nm measurement

with GASM was probably an overestimate as it was anomalously high in all the

measurements with this instrument (but no reason has been found for this problem, so the

measurements are reported "as is"). First we note that the GASM coefficients are

somewhat larger than the BP coefficients (but within the standard error), particularly in the
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blue. The BP derivedcoefficientshave lower standarderror than the GASM derived

coefficients. This is because the acidified measurements could be performed on every

sample, versus the end points for GASM, as discussed above. The previous work by

Bricaud and Morel (1986) have no experimental measurements of b b for E. huxleyi,

however they do show theoretical Mie scattering calculations for this parameter. These

calculations predict a positive exponent for the wavelength dependence of b b, however the

wavelength dependence determined form the GASM measurements leads to a power law

dependence on wavelength with an exponent of-1.4, -1.2, and -1.0 for the coccolith,

plated cell and naked cell component respectively. Naked cells should be similar to typical

phytoplankton cells, which have a relatively low average relative index of refraction (1.05

or less, relative to water (Mobley, 1994)). A wavelength dependence -1 is what is

commonly assumed for the wavelength dependence of the total scattering coefficient

(Gordon and Morel, 1983). Plated cells will have a higher relative index of refraction

because of the calcite coccoliths, and in this case show a larger wavelength dependence.

Free coccoliths, with their high relative index of refraction and small size have the largest

wavelength dependence, which could cause a signature in remotely sensed images if

differences in the visible bands are viewed.

While in field cases it is not possible to get a separate number for the bb* of plated ceUs

and naked cells, some estimates of the bb* due to coccoliths have been made. The

bb*coccom from the BP measurements (1.37E-13 and 1.27E-13 m 2 coccolith -_) are close to

the field measurements reported in Balch et a1.(1991) of 1.41E-13 and 1.29E-13 m 2

coccolith I for the 436 and 546 nm respectively. Field measurements of bb*co,_o_ith should be

an overestimate due to neglecting the contribution of plated cells, but this does not appear to

have been the case in this situation. Note that in the Balch et al. data set, the ratio of free

coccoliths to cells reached values of 400 or more, thus the free coccoliths dominated the

optical properties, the contribution by plated cells was negligible (as will be discussed

below).
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Besidesthewavelengthdependenceof thesefactorsit is usefulto look at the absolute

magnitude of the bb*. As can be seen, it varies between components by less than the beam

attenuation coefficients. This is because small particles (in this case coccoliths) tend to

direct more of the scattered light in the backward direction causing them to be more efficient

backscatterers. Thus the ratio of bb*co_coli_to the bb* is on the order of 40 rather thanplated cell

100 as in the case of c.

If these bb* coefficients are relevant for field samples we can use them to look at the

relative importance of free coccoliths to plated cells in determining the optical signature of

the ocean for bloom conditions. To test these coefficients a data set obtained during a

coccolithophore bloom off of Iceland (Holligan et. al. 1993; Balch et. al. 1996a and b) was

used. This data set had counts of live cells and free coccoliths along with b b

measurements. Figure 7 illustrates the fit to the measurements, using the specific bb

coefficients derived above and the cell count data form the cruise, for the blue and green

wavelengths of BP. The value shown in Figure 7, bb', is the acid labile bb, which is b b

total minus b_ acidified and is effectively the b_ for the calcite in the sample. The

coefficients used in the model were from the ones derived from the BP measurements of

the laboratory cultures. The 1 :I line is shown along with a line representing the best fit.

There seems to be an overestimate of the field data by 20%, but overall the model seems to

do a reasonable job of estimating the field data. The importance of this work is in showing

the relative importance of the components in determining the optical properties. With

counts of the separate components, we can determine the relative contribution of the plated

cells and coccoliths to the total b b in this situation. Figure 8 illustrates the portion of b b due

to plated cells versus bb'. bb" should include contributions from plated ceils and free liths.

It appears that in this data set b b' is dominated by plated cells. If one looks at the ratio of

free coccoliths to plated cells, it is obvious that in this study the high b b' cases are those

dominated by cells (i.e. low detached coccolith to plated cell ratio). Since the ratio of free

coccoliths/cells can vary from bloom to bloom, the importance of free coccoliths versus
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cells in determiningthe opticalpropertiescanvary. For example,Balch et al. (1991)

reported coccolith/cell ratios for blooms occurring in the Gulf of Maine for two years, 1988

and 1989. In the first case the highest free coccolith/cell reported were about 50, indicating

that coccoliths would have had approximately equal importance as cells in determining the

back.scattering. In the 1989 bloom, the coccolith/cell ratio reached values over 400, and in

this case the free coccoliths would have been the dominate constituent. The coccollth/cell

ratio can vary within blooms and non-bloom waters which makes this an important ratio to

understand in interpretation of remote sensing reflectance.

Conclusions

We have found the specific backscattering and spectral beam attenuation coefficients for

the separate components of coccoliths, plated ceils, and naked ceils. These show that the

plated ceil contribution to the optical properties can be greater than the sum of the coccoliths

coating them. Thus the optical properties of a coccolithophore bloom are sensitive to the

ratio of free coccoliths to plated cells. Since the spectral variation of bb* is different for

these coefficients, the remote sensing reflectance will vary with this ratio, with the stronger

spectral variation when free liths dominate the upper water column. This ma be the reason

that blooms with a high ratio free liths are most evident in satellite images based on color

differences techniques.
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Table 1) Specific beam attenuation coefficients. Standard error of the coefficients are

shown in parenthesis.

wavelength c*
¢o¢¢olilh C *

plated cell C_
naked cell

m: (lith)txl0 _2 m: (plated cell)_xl0 _o " m s (naked ceU)_xl0 -

440 5.2(3.9) 7.4(3.4) 7.9(3.8)

490 4.1(3.4) 5.9(3.0) 7.3(3.3)

520 3.6(3.3) 5.5(2.9) " 7.4(3.3)

550 3.0(3.3) 5.7(3.0) 7.3(3.2)

670 1.1 (3.5) 6.3(3.0) 6.6(3.4)
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Table 2)

BP derived spectral backscattering coefficients. Standard error of the coefficients are

shown in parenthesis.

wavelength bb*coccollth bb*pl,,,.,Jcell bb*naked cell

m s (lith)lxl013 m s (plated cell)lxl0 I: m 2 (naked cell)txl013

456 1.4(0.2) 6.7(1.3) 9.9(2.3)

546 1.3(0.2) 5.8(1.2) 9.5(2.0)

GASM derived spectral backscattering coefficients. Standard error of the coefficients

are shown in parenthesis.

wavelength bb*co¢colith

m s (lith)-Ixl0 _3

440 2.1(0.2)

490 1.8(0.1)

520 2.2(0.2)

550 1.6(0.1)

610 1.4(0.1)

670 1.2(0.1)

bb*ptated c¢11 bb*naked c¢11

m 2 (plated cell)lxl0 _2 m s (naked cell)-lxl013

8.8(2.4) 1.7(1.7)

9.3(1.9) 1.3(1.0)

13(2.6) 1.8(1.4)

6.6(1.5) 1.1(0.8)

5.1(2.3) 1.7(1.2)

6.5(1.3) 0.84(0.72)
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FIGURE CAPTIONS

Figure 1) Comparison of the bb derived from the numerical fit to the Beardsly and

Zaneveld (1969) equation and bb found by directly integrating the VSF data.

Figure 2) Specific beam attenuation coefficients as a function of wavelength. Also

shown is the power law fit to each component, discussed in the text. The exponent found

for each component was -3.7, -0.28 and -0.38 for coccoliths, plated cells, and naked cells

respectively.

Figure 3) The measured c is compared with the reconstruction of c using cell counts

and the specific attenuation coefficients of the model.

Figure 4) Example VSF(490 rim) for each growth phase (stationary, log and

senescent).

Figure 5) Comparison of the BP measurements and GASM measurements of b b for the

same samples.

Figure 6) Specific bb coefficients (bb*) as a function of wavelength for both the BP

derived and GASM derived measurements. Also shown is the power law fit to each

component, discussed in the text. The exponent found for each component was -1.4, -1.2

and -1.0 for coccoliths, plated cells, and naked cells respectively.

Figure 7) Fit of empirical model to data obtained in coccolithophore bloom off of

Iceland. b b' is the acid labile bb, derived from the bb,o_ -b_im for the field samples.

Shown are the 1:1 line and a line showing the best fit between the measured and predicted

values.

Figure 8) Relative contribution of the b b due to plated cells to the acid labile b b ( bb' ).
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